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ABSTRACT

A review of the synthesis of planar four-bar function generators results in a more unified approach
to the problem. The question of number of parameters available for synthesis vis-a-vis the number of syn-
thesis equations is reconciled. Furthermore, the parameters used for synthesis are simply the coordinates
of the vectors that define the mechanism. The method developed gives very explicit equations in these
parameters and with slight modifications and derivations become applicable for higher order synthesis.
Thus, the method is generalized for multiply-separated-position (MSP) synthesis of planar 4-bar function

generators.

INTRODUCTION .

The milestone work of Freudenstein (1) on the approximate synthesis of four-bars has been
the basis for a lot of activity and research in the general subject of synthesis of mechanisms. One of
its most significant contributions has been the so-called “Freudenstein Equations” which have
been used and accepted as the tool for synthesizing planar four-bar function generators. These
equations have been modified to accommodate other motion requirements like pressure angles and
ranges of motion.

There are, however, some difficulties with the Freudenstein method when using it to synthe-
size for increasing number of positions. That is, it appears that one has to solve a system of non-
linear equations with more equations than unknowns. There is nothing inconsistent, however,
since one has to include some auxiliary equations that must also be satisfied. The difficulty really
lies in the fact that these equations/unknowns are not obvious and explicit in nature. In some
cases, they come about during the solution process. One needs only to examine references (2) and
(3) to appreciate the problem. In these references, the solutions have been shown for some of the
synthesis cases.

These difficulties were again encountered during a graduate course in Mechanisms at the De-
partment of Mechanical Engineering. This incident motivated the author to devise, if not develop,
a more coherent or unified approach to the problem.

After reviewing the basis and assumptions of Freudenstein, it was found out that only by
changing these basic assumptions can one develop the synthesis equations that are not of the
same form as the Freudenstein equations. In short, the Freudenstein equations are optimum for

the problem with its particular set of assumptions.
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Having changed the basis, initial attempts by the author have resulted in synthesis equations
that - although were coherent in terms of number of unknowns and equations — were quite cum-
bersome and highly non-linear even for very simple cases.

THE UNIFIED METHOD

The unified method can be best described as a reconciled approach in terms of number.of
equations and number of unknowns. At the very start, the parameters for synthesis are identified
and as successive positions are required for synthesis, so are corresponding number of parameters
made available for synthesis. In this method of synthesis, the mechanism is defined at its initial
position by the j counter set to 1. A synthesis equation (that is, one) is obtained when the mecha-
nism is made to satisfy an additional position different from the initial position. Thus, 2 position
synthesis (j = 2) means that one synthesis equation is obtained and only one parameter can be
solved for — the rest have to be specified; 3 position means two synthesis equations and so on.
This method also makes higher order synthesis possible thru the use of the higher order form of
the equation and still with the idea of having an equal number of equations and unknowns. Things

are still consistent because a position is counted whether it is a higher order {infinitesimally separa-
ted) position or not.

DEVELOPMENT OF THE SYNTHESIS METHOD

The new method of synthesizing four-bar function generators is based on the following
steps:

a. Redefine the parametric definition of the four-bar function generator.

b. Develop the equation of motion based on displacements in vector form.
c. Reformulate the equation of motion to be functions of the parameters defining the
four-bar function generator.
d. Extend the applicability of the synthesis equations for higher order synthesis.
e. Solve the different cases of different numbers of positions, specified and available
parameters for synthesis.
Y
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Figure 1. The Four-Bar and its Vector Representation
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Figure 2. The Four-Bar at its Displaced Position

Figure 1 shows the four-bar as defined by vectors A, B, C, and D, and by the motion para-
meters ¢ and 0. For function generation, the vector D is made into a unit vector in the X
direction to fix the scale of the mechanism to be synthesized. It should be noted that a four-bar
that is scaled-up or down will still have the same relations in terms of its motion parameters ¢ and
0. Thus, we only have two vectors that are available for synthesis. They are any two from the set
of A, B, and C. From previous attempts at this task of synthesizing, it was found out that the com-
bination of A and C as the vectors to be synthesized for is most convenient.

Referring to Figure 2 which shows the displaced position of the four-bar, the equation of
motion as derived in reference (4) is

cos¢i[Q‘Q) — (A*C)cos 0, - Colk x A)sinﬁjl +
sin¢i[(l_< x €)*D — (k x C)*Acos §, — (A*Clsin Bi] +
[(C°C +D"D + A*A~ B+B)/2 ~ (A-Dicost, — D*(kxAlsing | =0 (1)

where k is the unit vector along the Z axis.

To eliminate the vector B which is really dependenton A, C and D, the loop closure
equation is written as

B=C+D-A (2

B'B=A'A+C'C+D*D—2A'C—2AD +2C'D 3
Substituting equation (3) into equation (1) will give us

cos¢j((_3'Q) - cos¢icosoj(A'Q) - cos¢isin0j(& xA)C

+sing (k x €)*D — singycosf (k x C)*A— sin¢isin03(A'§)

+A'C+A'D-C'D - cosf(AD) - sinf(k x A)*D=0 (4)
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We now write the design vectors as

1>
"

aitay (6

and C=c,itecy (6)

1

These are our design vectors because they define the unique four-bar that will satisty the motion
requirements. In essence now, the procedure is to specify the motion requirements as ¢wj and 0i
and try to solve for a,, a,, ¢4 and c,. Of course, depending on the number of positions, (in turn,
the number of equations), there can only be a set number of unknowns in ay, 3y 4 and c,.

Without going through the lengthy manipulation, equation (6) when substituted into equa-
tion (4) will result in

(1- cosOi)a.‘ +sin Ojaz + (cosrpi i simi)jc2 +

(1- cos¢>jcos()i - sm¢>jsm0j)a1c1 + (snncf)icosoj - cos¢jsm0i)a1c2 + |
. . L 7

(cos¢;]sm0’. - sm¢i00503)a2c1 +(1- cos¢joo=>0i - smtpismoi)azc2 =0 (

Equation (7) is now the synthesis equation for any number fromj=2toj=2 3, 4,5.

Thus, we can write equation (7) as

K”a‘ + K2ia2 + K3jc1 + K4j°2 +
Ks,'a1°1 tKga ey b K”a?c] + I<8ia2c2 =0 (8)

=2, 3, uptob

The synthesis equation as given by equation (8) is really the displacement synthesis equation
since the Kii's are just functions of ¢i's and Oi's. If we now take the time derivatives of equation
(8), the form of the equation will not change with respect to the desi

gn variables 34, 3y, Cy and
Cy. Thus, the generalized MSP synthesis equation is simply

n n + n + n n
Kij a]+K2i a, K3ic1 K4ic2+K51 a,c, +

Kg a1y + Kyflaze, + Kgllaye, = 0 (9)
where j=2 3, uptob
and n=0orlor2or3
Note also that the Kij"'s are simply

dl’l

—— — n

dtn (Kij) Kuj (10)
The important feature of equation (9) is that finitely separated positions (FSP) or infinitesi-

mally separated positions (ISP) or combinations of the two (MSP) can be specified with ease by

using the appropriate K,i" terms in the equation. The counter j in the equation takes on a slightly

different meaning - it is now a label for either ISP’s or FSP’s. The initial position is also set as the
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j = 1 position. For every (jth) position (except j = 1), equation (9) is written by computing

each K, term from the required functional relations of [¢i' q'Si, ¢, 00,05 4'9} ... ] whenever

ISP’s are specified at that discrete position. For example, if an ISP of second order is specified,
then the displacements and velocities together with the accelerations must be specified. If P, V
and A stand for position, velocity and acceleration, respectively, and a dash represents separations
between discrete positions, then, only clusters of P, PV or PVA can be grouped between dashes.
Groups like PA or VA or V alone are not valid. An example of a valid set of specifications is the
representation of the following five MSP specifications: P-PVA-P. Note also, that the j = 1 position

refers to the initial position where ¢, and 6; are both zero.

SOLUTIONS TO THE DIFFERENT SYNTHESIS CASES

The solutions to the different cases of number of positions and parameters available for syn-
thesis will now be presented. It should be noted that any parameter not available for synthesis is

assumed to be specified.

A. Two Positions

For this case, any one of a,, a 5, ¢, or ¢, can be considered as the unknown. In all cases,
the result is a linear equation in one unknown.

B. Three Positions

There will be two equations for this and a possibility of two cases of unknown parameters.
First is when either the vector A (in a; and a,) or C (in ¢, and c,) is the unknown and second is
when a parameter each from A or C are the unknowns.

For the first case, the result will be two linear equations in two unknowns as shown for
example when a; and a, are the unknowns, :

(Kyy+ Kgjcq * Kﬁicz)a1 + (sz *Kye * Kaicz)a:Z + (K3]c1 + K4i02) =0 (11)

i =23

For the second case and letting a, and ¢, be the unknowns, we can rearrange the equation to
give

[(Ky; + Kgjeg) *+ KgjeqJag # [y + Kyey + Kgapey) + (Kyj +Kpjaple, ] =0 (12)
i =23

Equation (12) is simplified as

(Al + Bjc1 )31 + (C, + DiC1) =0 (13)
i=23

The solution to this system of non-linear equation is obtained by first finding the eliminant
expressed as the following determinant (please see reference (5) for further details),
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(A, +Byc,) (C, +Dyey)
=0 (14)
(A3 +Bsc,) (Cy+Dye,)

This will give us a quadratic equation in c,, the roots of which are solutions for ¢,. They are
then substituted in any of the two equations of (13) to get a,. Note here that there are two pos-
sible sets of solutions.

C. FourPositions
The only possible case is that one vector in its two parameters and one parameter of the
other vector are the unknowns. The solutions will be presented for the case of a,, a, and ¢, 3
the unknowns. Any other combination of unknowns will have exactly the same form of the solu-
tion since the distribution of the variables and their products are the same.
The synthesis equations are rearranged so that the coefficients of the parameters a, and a3
are functions of c,. Thus, we get
[(Kij *Kgicp) + (KgiepMay + [(Ky+ Kg o)) + Kyue, Ja,
+ K4ic2 + K9ic1 =0 (15)
Again, we can write equation (15) as
(Aj + Bjcl)a1 +‘(Cj +Dicyla, + (Ei + Flcl) =0 (16)
i =234
The solution for ¢, is obtained from the determinant below set to zero
(Ay +Bycy)  (Cy +Dycq)  (Ey + Focy)

(A, +Byc,) (Cp+Dycy) (Eg+Fcy)

The roots of the cubic polynomial obtained from the determinant called the eliminant will
now give the solutions for ¢,. For every value of c,, we then substitute it in any two equations
of (15). This will give us two linear equations in two unknowns a; and a. Thus, there are three
possible sets of solutions for the four position synthesis of the four-bar function generator.

D. Five Positions

For this case, the unknowns are all of the four parameter a,;, az, ¢; and c,. The synthesis
equations are made into the following form:
c, + G

a,¢, + Hiazc2 =0 (18)

J J

A,c1 + (Bj + C]cl)a1 + (Dj + E‘.c1 )32 +F
j=22345
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The eliminant of this system of equations is obtained by multiplying all of the equations by ¢,
twice so that a system of twelve homogeneous equations in the twelve unknowns a,, ap, a,Co,
d@3Cp, Cq, 1, 31022, 32C22, 022, a<| C23, 32C23 and 023.

From this system, the eliminant is obtained by setting the determinant of the coefficients
of these twelve unknowns to zero. This is as follows:

A,c](i?,i + CjCI) (Di + Eic1) F’ Gi Hi

Ajc1 (Bi + C]c1) (Dl + chl) Fi

Ajc1
Gi Hi
(Bi + Cjc1) (Di + Eic,) Fj Gi Hj =0 (19)
j =2345

The resulting eliminant is a fifth degree polynomial in ¢,. There is a convenient technique
shown in reference (6) for evaluating polynomials from these types of determinants. The roots of
this polynomial now give the solutions to ¢;. With ¢, known, we now consider any three equa-
tions of (18) and rearrange the equations to give

(A] + Bicyla, * (C[ + Dicylay + (E] + Fic)) = 0 (20)
=234

The solution for ¢c,, a; and a, is now obtained in a manner similar to that for the four posi-
tion synthesis problem. Finally, therefore, there are theoretically 15 possible solutions to the five posi-

tion synthesis problem. This is because any one value of ¢, (there are five) will have three possible
solutions for c,.

CONCLUSIONS AND RECOMMENDATION

The unified method has been shown including the solution procedures for all the different
cases presented. Except for the case of the maximum number of positions (i.e., five), the solutions
are quite straightforward. The solution to the five-position problem will require the assistance of
a computer since there is a need to evaluate a 12 x 12 determinant.

Further study in eliminating possible branching and order problems would enhance the solu-
tion to the synthesis problem.
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