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The work-energy method of solving problems in kinetics is well known to students of
dynamics. It is usually the most expeditious method of solving problems in kinetics that
explicitly involve displacements. The very nature of the method, however, precludes the
determination of the values of forces that do no work. For example, the values of the
reactions at fixed supports can not be found by this method. Also, since only a single scalar
equation can be written for each body of the system under consideration, situations
frequently arise when there are more unknowns than there are independent work-energy
equations. In these cases, supplementary equations are obtained by using the
force-mass-acceleration or impulse-momentum methods.

In this paper, the work-energy principle will be formulated in such a way that three
independent equations can be written for each rigid body of a dynamical system that is in
plane motion (other than translation). This formulation is based on a little known procedure
for deriving the work-energy equation. The reader is referred to “Theoretical Mechanics” by
W. D. MacMillan (McGraw Hill Book Co., 1936) in which two independent scalar equations
were first obtained .and then added together to yield the work-energy equation.

A modification of the treatment in MacMillan’s ‘book -will be presented here. It is not
the intent of this paper to present another way of deriving the work-energy equation. Rather,
the aim is to derive a set of three independent equations that look like work-energy equations
which can be utilized for solving problems in kinetics. With this formulation, the value of
some forces that do no work can be determined without resorting to the
force-mass-acceleration or impulse-momentum methods. Three examples are given to

demonstrate the use of the equations.
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Initial position

The following symbols arc used in this paper:
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x coordinate of the mass center G

y coordinate of the mass center

x component of the acceleration of G
y component of the acceleration of G

initial velocity of G
final velocity of G
x component of v;
y component of v;
x component of vg

y component of vp

angular acceleration

initial angular velocity

final angular velocity
angular position of the body
mass of the :oody

mass moment of inertia about G

Final position

The general plane motion of a rigid body is described by the following equations:

ZFy = may =

2F, = may

Mg = lg¢
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Multiplying both sides of Equation 1 by dxg (the x component of an infinitesimal
displacement of the mass center) gives
dv_

ZdexG =m dt—\ de = mvxdvx.

When the preceding equation is integrated from the initial to the final position of the body,
the result is

| N ;
TV Fdxg =5 VAT = vi] )
A similar equation is obtained by multiplying Equation 2 by dy G and integrating:
- . .
ESF Ay =3V - v‘yi]. (5)

We next multiply Equation 3 by d © (an infinitesimal angular displacement of the rigid body)
to obtain

dw
—_ . T = l A
IMGd0 = 1 mm do Guxlew

Integration of this equation from the initial to the final position of the body results in the
cquation

1 - ]

Ikquations 4, 5 and 6 constitute a system of three independent equations that can be
used for studying plane motion of rigid bodies. The relationship between these equations and
the work-energy cquation for plane motion will now be established.

Denoting by Ujr the work done by all the external forces acting on a rigid body as it
moves from some initial position to a final position, we have the following principle of work
and cnergy:

l 2
Uy —dlg (W} =R +om (- VAL (7)
The right hand side of Equation 7 is the change in the kinetic energy of the body and is

cqual to the sum of the right hand sides of Equations 4, 5 and 6.

To obtain the work done by the external forces, each external force will be rgplaced by
an equivalent force-couple system at the mass center. The original force system will thus be
replaced by an equivalent system consisting of couples lying on the xy plane and forces that
are concurrent at the mass center. The work done by the x components of the forces
concurrent at the mass center is equal to the left hand side of Equation 4. The work done by
the y components of the same forces is equal to the left hand side of Equation 5. The work
done by the couples is equal to the left hand side of Equation 6. Hence, the total work Uif is
equal to the sum of the left hand sides of Equations 4, 5 and 6. In other words, when

Equations 4, 5 and 6 are added, the result is Equation 7.

Another way of viewing the results that have been obtained is to consider plane motion
(other than translation) as a combination of the following constituent motions:

a) translation with the mass center along an arbitrarily chosen x direction,

b)  translation with the mass center along the y direction which is perpendicular to
the x direction, and

¢}  rotation about the mass center.
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The kinetic energies during the translation along the x and y directions can be defined
as lmle and 1 .2, respectively. The kinetic energy during the rotational part of the
2 2 y

motion is %I(,wz )

The principle of work and energy for a rigid body in plane motion can now be stated as
follows:

The work done by the external forces acting on a rigid body during a constituent
motion is equal to the change in the kinetic energy of the body in the same
motion.

The following examples illustrate how this alternative formulation is used to determine
the values of quantities not otherwise obtainable through the application of the traditional
work-energy principle alone.

Example 1:
V7777774 A flexible cord is wrapped around a cylinder
of weight W, Find
a) the velocity of the mass center of the
cylinder after it has moved a vertical
distance s starting from rest.
b) the tension in the cord.
Solution:
A
T
The free body diagram of the cylinder is
shown at the left. The traditional work energy
— G equation (Eq. 7) yields
1 2 1 2
: ws = LW+ =g o
| w Zg
S ' , 1w
: ! Since  Ig =——=r* and w; = ¥f
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where r is the radius of the cylinder, then
=V 4

3

It will be noted that the work-energy equation for the complete motion does not
involve T since the work done by the tension in the cord is zero. However, for a constituent
motion, namely, translation in the vertical direction, the force T does work. We therefore
apply Equation 5 to the cylinder and write



w|Z

so that T=

Example 2: A homogeneous bar of length 2 and weight W
is supported by a smooth pin at one end and
is released from rest when © = 0. Find in
terms of © the angular velocity of the bar and
the horizontal and vertical components of the
reaction at the pin.

Solution:

+X
The free body diagram of the bar is as shown.
Using Equation 7, we obtain
w
(1=%)
3g

ﬂsin0=% wzf

+y

so that wp = _\/W
9

The coordinates of the mass center G when the bar has turned through an angle ®are

=2 2] =2 ina
XG 2cos Y6 5

Therefore,  dxg = ;‘i sin 6 d6 and dyg =_§_cos 6 d6

The use of Equation 4 yield i
ORI IYEE  m4sin 046 =+ Y (L sin 0 p?

=3W¢ 36
8
Differentiating the preceding equation with respect to ©® and solving for H, we obtain
H =% in 6 cos 6.
4
The expression for V can be found by using either Equation 5 or Equation 6. Using

Equation 6, we get w .
’ V2 o5 6d6 - fHE sinfdf _1 (i —g)38sinb

Differentiation of this equation with respect to © gives

_\,—Qcose—ﬂ—g Sine =l cos 0.
2 2 8

Using the expression obtained for H, we get
v=¥ 4 W in2 6.
4 4
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Example 3: The homegencous bar AB of length € and
weight W is released from rest when © =0.
A Neglecting friction, find the angular velocity

of the rod and the reactions at A and B in
terms of ©.

Solution: The coordinates of the mass center of the rod

are
R.Y

A _ 0 anc =4 s 0
— XG —.ism and yG—? cos 0.

_8G

Hence, V, eos 0
’ dt 2
and vy == = === sin 0

where w = d_@

dt .
From Equation 7
’ g _ R =1 d W 2 2
W E = 0) == (=2 )y w*
G 7 0= Gy De
+%%&%wﬁ+(—@mmﬁ

so that

w=—\/37g. (1 —cos 6) .

Equation 4 for this problem is

R,%
AT cos 0 df = L
2 2

W w20% cos2g
"é‘ = W3 (cos2 0 - cos> 0)-

4 8
Differentiating this equation with respect to 6, we obtain
R,
A
— cos 9=% (= 2 cos O.sin O + 3 cos® 0 sin 0) -

Therefore,
RA:%(30059—2)sin0.

Equation 6 yields Ry R, 2
B _ A =1 Jd W 2
L osinf-_L2 cos)dd=_(—_ 2 ¢ .
J( : > ) 5 (12 ” )w



Differentiating with respect to 0, we get
R_BQ sin O—E_Q_Q_ cos 0

_ 1
3 D 24

|, PRI
X7 (28 sin 0),
g Q

Using the previsouly obtained expression for R, . we obtain

RB=% +%V (3 cos O = 2) cos 0.
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