105

“The elimination method in solving non-linear
equations . . . has the advantage of revealing the
maximum number of solutions possible.”

Solutions to Systems of Non-Linear Equations
That Arise in the Kinematic Synthesis of Spatial Mechanisms*

by
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Abstract

Determining the key dimensions of a mechanism for a prescribed performance is called
the “synthesis” of the mechanism. The prescribed performance is given by specifying position
or motion specifications at ‘“‘precision points.” These specifications lead to a system of
equations whose solutions give the desired key dimensions of the mechanism. Synthesis for
two or three positions generally results in a linear system of equations. Synthesis for more
than three positions leads to a non-linear system. Different types of mechanims give different
forms of synthesis equations. In this paper, two spatial mechanisms —a three-link mechanism
with an intermediate higher pair for function generation and a five-link motion generator

mechanism — are considered.

Introduction

The synthesis of spatial mechanisms has been studied by many researchers and authors.
Among them were —Novodroskii [1], Levitskii and Shakvasian [2], Rao, Sandor, Kohli and
Soni [3], Roth [4,5], Chen and Roth [6,7], Sandor [8], Sandor and Bisshopp [9], Suh [10,11]
and Kohli and Soni [12,13], who developed various methods and analytical tools for the
kinematic synthesis of spatial mechanisms.

Recently, Hernandez, Sandor and Kohli [14] proposed a three-link .RSpR****
mechanism for spatial function generation and Sandor, Kohli, Zhuang and Remholtz ,[.15]
developed the design procedures for four-position synthesis of the RSSR-SC spatial motion

generator.

The objective in the synthesis of mechanisms is to determine the key dimensions for a
pre<conceived type of single input mechanism for a prescqbed performance. The petrform:‘mce
is prescribed by specifying position or motion parameters'at the so-called precision points.
The specified positions or motion specifications can be ﬁmtely' spaqed apart or tljley can be
spaced infinitesimally close together. In the latter case, the specifications are functions ot" the
-displacement or motion derivatives. Precision requirer.m'ents may be spec1ﬁ_ed py finitely
separated positions (FSP), infinitesimally separated positions (ISP), or combinations of ISP

and FSP, called multiply-separated-position (MSP).

mechanisms for two or three multiply-separated positions
quations. For four or more MSP synthesis, the synthesis

f systems of non-linear equations.

Kinematic synthesis of spatial
generally results in systems of linear

Procedure would require the solution o
—_—
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Different types of mechanisms would give different forms of synthesis or design
equations.

In this paper, the method used to solve the resulting non-inear systems of the R-Sp-R
for six positions and the RSSR-SC for four positions will be presented.

The R-Sp-R 3-Link Spatial Function Generator

Figure 1 shows the preconceived 3-link revolute — sphere-plane — revolute mechanism.
The minimum number of only two moving links is achieved by employing an intermediate
higher pair. This mechanism is synthesized by prescribing the rotational motion of link 2 to bé
coordinated with the input motion of link 1. The same figure also shows the vectors that
define the geometry of the mechanism at its initial position. These are:

nw=>

A unit vector defining the direction of the axis of link 1 at the revolute pair A. This
axis is made to coincide with the X-axis such that g =1

UB  unit vector defining the axis of the revolute pair B. It is defined by the skew angle
95 measured about the common perpendicular of A and @B, collinear with the
Y-axis. Thus, 8B = cosfl ( i —sin Ok.

Q  vector along the Y-axis, the common perpendicular of iA and {ig from A to B.

R vector from the origin to the point R, the sphere center, a point fixed to link 1.

R’ vector from the origin to the point R’, a point fixed to link 2 and initially
coincident with R. Initially then, R=FR

A aunit vector fixed to link 2 and perpendicular to the plane in the Sp pair.

6  angle of rotation of link 1 about {iA and

¢ angle of rotation of link 2 about iB, both measured from their respective

unknown starting positions, to be determined in the synthesis.

Figure 1. Schematic of the R-Sp-R 3-ink spatial function generator mechanism.
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The vectors R and A are the design vectors of the mechanism. The other vectors simply
position and orient the mechanism in the coordinate system.

By prescribing up to five motion specifications for the mechanism, a system of
non-linear equations is obtained consisting of up to six equations. If j = I denotes the initial
position of the mechanism, j = 2 the second, and so on, then the synthesis equations obtained
are in the following form (the reader is referred to references [14 ] and [16 ]for the details of

the derivation of the synthesis equations):

[0+ pd2)kyj + kojdy Jrp +[K3j + kgjdy +ksjda]ra

+ [K6j + kgjdy +kgjdy Jr3 + (1 + pda)ko; +qkyjdp] =0
j=2,3,upto6( -1 equations) (1)

-

where
P, q, and the K;.’s are constants, determined from the motion specifications, are known

and 1y, 19, I3 gmd d;, dp are the unknown parameters of the design vectors, namely
vector R and unit vector A respectively.

The Elimination Method

The system of equations (1) is solved for 1y, 1y, 13 and dl’ d, by the elimination
method. This methed is a procedure of obtaining from the system a polynomial in only one
variable, the so-called “eliminant variable” (the rest of the variables are eliminated). The roots
of this “eliminate” equation are the solutions for that one variable and are then used to obtain

the solutions to the other variables by back substitution.

The procedure for getting the eliminant polynomial consists of setting up a
homogeneous system of n linear equations in n unknowns from the original system of (j — 1)
noninear equaticns (1). The coefficients of the unknowns are made to be in terms of one
variable, the variable in the eventual eliminant polynomial. The unknowns may include
constants, functions, products and/or powers of the other variables to be eliminated.
Depending on the number of prescribed positions and the combinations of unknown variables,
the system of homogeneous equations may be obtained either directly from the system of
equations or by multiplying the system of equations with appropriately chosen variable or
variables and adding these new equations to the original system. This may be done a number
of times until the number of unknowns and number of equations are equal. The eliminant
polynomial is then obtained by setting the determinant of the coefficient matrix of the
homogeneous system of equations to zero. The resulting square matrix of the coefficients
must be singular to assure that the system of equations will have a set of non-zero
simultaneous solutions for the unknowns, In other words, it insures that the system of
equations is compatible, therefore, the principal determinant of the matrix of coefficients is -
equal to zero and the roots of the resulting polynomial are compatible values of the eliminant
variable. The method will now be illustrated by the following two examples:

Example 1: Three equations in three unknowns with two product terms.
a-x+bjy+c-z+djxy+e-xz+fj =0

j ] ]
i=1,2,3

The equations are re-arranged so that the coefficients are in terms of one variable, say x. Thus,
(b; +dx)y +(c; tex)z+(f;+ax) =0
) J J J 3]
i=1,2,3 3

Equations (3) are now considered as a homogeneous system of three equations in the three
variables y, z and 1. Thus, the determinant of the coefficient matrix must be zero to have

non-trivial solutions. This yields the eliminant as the determinant



108
(b + dx) (¢ + ) (f +ax)|=0 @

Equation (4) is called the eliminant polynomial — whereby y. z and 1 were eliminated from
the system of equations and x is forced to take on values such that it will be common to all
the three equations of equation (2) or (3). Equation (4) expands into a cubic equation in X,
the roots of which are solutions for x. To find the solutions for y and z, these roots of x are
then substituted into any two equations of (2) or (3), giving a system of two linear,
non-homogeneous equations,

Example 2: Three equations in three unknowns with three product terms.

X+ b.v +c.z +d. + e.x7 ; L=
ajx bj) ch djxy CJ}\L + ijz +g =0
i=1.2, 3 )

One variable (again x) is chosen as the eliminant variable and equation (5) is rearranged
as

.+ a. : . . . .yz =
(g +ax)1 +(q+ &X)z + (b; + dx) y + fiyz =0
i=1,2,3 (6)
The three equations (6) can be considered as having four unknowns: variables 1, z, y and yz.
Multiplying these three equations by y will give three more equations and also introduce two

acziditiongl unknowns, y? and y?z. The system of six equations in the six unknowns 1,y,z,yz,
y” and y“z is written as

[(gj + ajx) (cj + ejx) (bj + djx) fJ 0 0
0 o (gj + ajx) (cj + ejx) (bj + de) t_J

i=1,2,3 (M

The method shown in obtaining the coefficient matrix is called Sylvester’s Dyalitic Method of
Elimination [17 ]. Other methods exist but Sylvester’s method is straightforward and does not
require manipulations of the équations. The determinant of the coefficient matrix is now set
to zero, expanding to the eliminant polynomial in x. Its roots are then substituted into any
five equations of (7) to get the values of z, y and even yz, y* and y?* z. Consistency of these
roots with one another is an excellent check on computations.

Tl.le method will now be applied to solve two synthesis cases for the R-SpR
mechar}ltsm — the five-position problem where the unknowns are ry, I, r3 and d,, and the
six-position problem where the unknowns are r, , r,,13,d; and d, .

Five-Position Synthesis of the R-Sp-R

With d; [ eq. (1)] known, the eliminant can readily be determined from system (1)
written for j = 2, 3, 4 and 5. This eliminant is written as the following determinant set to
zero:

|[(1 +pdz) kijt kojd JCA + B,dyy (C; + Djdy) [(1 +pdz ) ks + qky d]j= 0
i=2,345  ®

The eliminant (8) would seem to be a quartic polynomial initially. However, because of the
dependency of the terms in the first and fourth columns of the determinant, a constant
polynomial independent of motion specifications can be factored out..This is the polynomial,
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(1 +pd.)* —qd)2 ©)
Thus, the quadratic eliminant polynomial is obtained as

The 2 or O real roots (only real roots are acceptable as solutions) for d; are then substituted
into any three equations of system (1). This will result in a system of three linear,
non-homogeneous equations in unknowns ry , 1, and rs.

Six-Position Synthesis of the K-Sp-R

Because of the relationship among some of the coefficients in the synthesis equation
(1), a dyalitic elimination applied directly on the design variables will result in a null
polynomial for the eliminant Furthermore, the system of equations has the polynomial of
equation (10) as a common factor, so that application of dyalitic elimination is redundant —
the condition that common roots exist is already satisfied. To obtain an eliminant, the
synthesis equations are arranged so that all the coefficients are independent and in terms of

one variable d, . Thus

(k3J + kSJdZ) I +(k6J +k8Jd2) I3 + kl_] x + kz-‘y +k4jdlr2 +k7jdlr3 =0
j=2,3,4,56 (1)

where the auxiliary variables x and y are
x=(1+pd;)r, +qds

y=(Q0+pd)+d; 1, (12)

Equation (12) is now considered to have six unknowns rz, I3, X, ¥, fjlrz and d,r3 in five
equations. Multiplying the five equations by d1 will introduce four additional unknowns ‘dl X,
d;y, d,?r, and dr; . Thus the eliminant is obtained from the following 10x10 determinant

set to zero.
(Ksj + Ksj d, ) (Ksj + Ksj d; ) Klj KZj K4j

0
(Kej + Kgjdz) kyj kzj Kaj k7
i =2,3,4,5,6 (13)

The eliminant turns out to be a cubic and will give one or three real roots for dy.

The next step is to obtain the values of d; . One can use the values of d, and substitute
them into any four of the five equations and then get an eliminant in d, (see the five-position
problem). This method will, however, introduce and extraneous root. One of the root§ that
will be obtained from the quadratic in d, will satisfy only the four equatigns used in the
eliminant for d,. The other root for d, will be the value of d, that will satisfy all the five
equations. This method could be used, but a better method would be to set up an eliminant in
d; which will give only the one correct d;. This is achieved by using all the five equations at
the same time.

The synthesis equations (d, already known) can be arranged in the following form.
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Kyjx + (K55 + ksjd2 )+ Kajdy] 1+ (Kej + Kgjdoirs +
K7j(llr3 + l\IJ )"_'0

j= 2, 3. 45,0 (14)
From equations (14) the eliminant is obtained as the determinant
I Kyj [Ksj + ksjda) + kaj di ] (Kej + ksjda) Kqj kpj | = 0
;5,60 (19)

w

j =23 4

The value of d; obtained from (15) and the corresponding d, used are then substituted back
into any three equations of (2) to get ry, ry and r3.

From the preceding application of the elimination method, one can make the following
general observations.

1.  Having some dependency on the coefficients of the equations will make a dyalitic
elimination impractical.

2. One can eliminate an unknown variable or its function (considered a different
unknown) even when the same variable is used in the eliminant (sece eq. 12).

3. Anytime a system of equations is multiplied by a function of one of the
unknowns, extraneous roots may be introduced.

The RSSR-SC Spatial Motion Generator

Figure 2 shows a schematic of the fivedink RSSR-SC spatial motion generator. It is
required that its coupler, the SSS link, be guided through four finitely or infinitesimally
separated arbitrarily prescribed positions. The formulation of the synthesis equations results
in the following two sets of non-linear systems of equations (see reference |15] for the
formulation of the synthesis equations).

Set A

22 Xi(Lisj + Liajys  + Lipjya) = 0

i=0

g = 1 j = 2,3,4, (16)
and 3 3-j i

p> z agpX x2j =0 17

i=olli=o0 ‘J‘j ? 17
Set B

; EO Ui ( Mu] + Mizjul + Ml3_]V1 +Mi4jV2) =—0

Y =1 j=2,3,4, (18)

where: The variables Xy, Xa; y;, y2 and v;, v, are any two coordinates of the unknown
vectors @, 39 and by respectively, and the variable u, is any one coordinate of the
unknown vector@ . The coefficients, L’s, a’s and M’s, which are deeerministic functions of
the prescribed motion parameters, are thus known. '

Sandor, Kohli, Zhuang and Reinholtz in reference [15 ] reduced the foregoing equations (Set
A) to two simultaneous cubic equations which were solved numerically. Set B yielded a 4-th
degree polynomial, which was solved in closed form.



Figure 2. Schematic of the RSSR-SC 5-ink spatial motion generator mechanism.

The systems of equations given by sets A and B can also be solved by the elimination
method. For systems A, the unknown variables y, and y, are first eliminated from equation
(16) by obtaining an eliminant in x,; and x, . This eliminant is cubic in X, and x, and is in the
Same .form as equation (17). The variable x, or x; is then eliminated from these two cubic
€quations to give a ninth degree polynomial in x; or X;.

The solution to equation (18) is similar to that shown in Example 2.

Dyalitic Elimination of 2 Cubic Equations
~ From set A (equations (17) and (18), the two cubic equations in x, and x, can be
written as

Arx; 3 4+ Byx? + Cyx; +D =0
and
A; X;°+ Byx; + Cyx; +D; =0 (19)
Where A. =a.
A_] a-l
Bj=b1j Xz +b2j

CJ =C]jX22' +Czj X2 +Caj
D] = dle23 + dzszz + d3sz + d4j
j=1,2 (20)
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Multiplying both equations of (19) by x; and x,* will give the following eliminant:

0 0 A, B, (¢, D
0 A, B, ¢, D
A, B, ¢, D O 0 0
0 0 A, By G D
0 Az Bz C2 D2
A, B, G D 0 0 (an

This will give the ninth degree eliminant polynomial in x; -- the roots of which are the
solutions for x,. The solutions for x; are then obtained by finding the identical roots of the

two equations of (19).

Conclusions

This paper demonstrates the applicability of the elimination method in solving
non-linear equations involved in the synthesis of some spatial mechanisms. This method has
the advantage of revealing the maximum number of solutions possible. A disadvantage of this
method, however, is that in almost all cases, one has to adapt the method to the specific
problem. The procedure is sensitive to manipulation and arrangement of the terms in the

equations of the system.
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