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Abstract

A technique involving surface marking of simple shear test specimens was used
to investigate the formation of shear bands in polycarbonate. Plane simple shear
testing was done to produce a single shear band in the test specimen. Testing was
done at ambient temperature (T = 23 + 1 °C) and at a constant reference shear
strain rate (y = 3 10-3 s-1). Results showed that the shear band formed at yield and
then propagated in two stages: first by elongation and later by widening. On the
shear stress vs. shear strain curve, the elongation stage corresponded to a stress drop
after yield and the widening stage corresponded to plastic deformation with a low
apparent strain hardening rate. Observation with markers showed that upon re-
testing, a previously deformed specimen no longer formed a shear band at yield.
Instead it deformed uniformly and homogeneously. End effects were also explored.
The results of this study confirm previously obtained results in the preliminary
testing of polycarbonate. Shear band formation and propagation were related to a
defect theory of plastic deformation for glassy amorphous polymers. According to
this theory, plastic deformation takes place when there are enough elementary
defects or when these defects are made to move at the right velocity. Shear band
formation was then explained to be the consequence of the difficulty with which
elementary defects could be formed.

Introduction

The plane simple shear test was developed as a means of acquiring supple-
mentary data on the plastic strain behavior of polymeric materials (Boni, 1981;
G’sell et al., 1983). Initial application of the test to the case polythylene has given
interesting results. The different stress field involved in simple shear has led to the
acquisition of data which are complementary to those obtained by other methods.
It was particularly observed that simple shear test results are easier to interpret
than torsion test results (Gopez, 1983) and that simple shear testing is free from
cross-sectional area changes in the specimen (Boni, 1981; Gopez, 1983 and 1984).

The simple shear test was also applied extensively to the case of polycarbo-
nate, an amorphous polymer which is in the glassy state at room temperature
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(Gopez, 1984; G’sell and Gopez, 1984). The shear stress-shear strain curve obtained
at room temperature is reproduced in Figure 1. It has been divided into five distinct
stages. Results also indicated the formation of a single shear band under the same
conditions for which the curve in Figure 1 was obtained. The general features of
band formation and growth were shown by a figure in a previous article (Gopez,
1984) which is reproduced in Figure 2. The stages in the stress-strain curve have
been shown to correspond with stages in band formation and propagation as
follows (Gopez, 1984):

a) Stage I, viscoelastic deformation: all strain is recoverable, no shear band
formation.

b) Stage II, stress drop at yield: shear band nucleates; it is narrow and
shorter than the test specimen. As the stress drops after yield, the shear
band propagates by elongation.

c) Stage III, linear plastic deformation with low apparent strain hardening
coefficient: shear band widens during this stage.

d) Stage IV, homogeneous plastic deformation with a high strain hardening
coefficient: deformation continues with increasing strain in the shear
band. No new shear band forms elsewhere.

The main objective of this study is to explore the shear band phenomenon in
more detail and obtain more information on the nature of the plastic deformation
mechanism which was proposed previously (G’sell and Jonas, 1981; Gopez, 1984)
for glassy amorphous polymers.

Experimental Procedure

Material

The same polycarbonate (Makrolon) used in the initial shear tests was used for
this study. The characteristics of the polycarbonate are given elsewhere (GopeZ,
1984). Some of the important properties are again cited below:

Number average molecular weight M, = 15600 g/mole
Weight average molecular weight My = 28800 g/mole

Polydispersity 1.85

Average degree of polymerization 60 monomers/molecule
Young’s Modulus 2200 MPa (DIN 53457)
Birefringence 5107

The starting material has low initial birefringence which indicates very little
molecular orientation. It may be considered to be isotropic.
Test Method

The plane simple shear test as developed by Boni (1981) and G’sell (et al,
1983) is the main mechanical testing method employed in this study. A descriptio?
of this test is already given elsewhere (G’sell et al., 1983; Gopez, 1984).

Test Specimens

To study the shear band evolution, reference marks were put on a surface
of the specimen’s calibrated part by fabricating modified test specimens as shoW{I
in Figure 3a. The general configuration is similar to that of a conventional spe
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men (Figure 3b) but the specimen is machined such that the grips and the calibrated
part are on the same plane. The normal shape of the grips is restored by putting
small plates of polycarbonate held in place by the specimen mounting screws. The
face to be marked and investigated is polished beforehand. The specimen dimen-
sions remain the same as in a conventional specimen, L=60 mm,h=4 mm,e =3
mm. The reference marks on the polished face of the specimen are made such that
they are parallel to each other and perpendicular to the shear stress direction. The
marks were made by passing the specimen on fine abrasive paper (1200P grit) by
means of a reciprocating movement.

Measurement of Local Shear Strain

Deformation by shear would be indicated by the deviation of the markers.
The angle of deviation of these markers in the deformed areas was measured with the
aid of a rotating platform mounted on an optical microscope. The tangent of this
angle, tan 0 gives the value of the local shear strain (y,c = tan ).

Interrupted Shear Tests

The shear test of a modified specimen was interrupted at different points in
the stress-strain curve to monitor the formation and propagation of the shear band
and to measure the plastic strain in the band. The following procedure was adopted:

a) interruption of the shear test by mcans of the “hold” function of the
MTS functions generator;

b) unloading of the applied charge on the specimen by controlled move-
ment of the piston of the testing machine (MTS 810);

¢) half-hour wait in the unloaded state to allow for the recovery of non-
plastic strains;

d) removal of test specimen from shearing apparatus;
e) observations;
f) remounting of specimen on shear test apparatus;

g) continuation of shearing up to another point of the stress-strain curve at
which the above-stated operations are renewed.

For this study all of the tests where done at ambient temperature (23+1°C)
and at a constant reference strain rate of 3103 s-1.

Observation Technigues

Observations on a microscopic level were done on modified specimens sub-
jected to the interrupted shear test. An optical microscope (Reichert) was used
for this purpose. Where they are needed, photomicrographs were obtained by
using an Olympus OM2 camera equipped with a microscope attachment. As pre-
viously stated, the angle of deviation of the reference markers was measured with
2 vernier-equipped rotating platform mounted on the microscope. Shear band
dimensions were measured on the resulting photomicrographs.

Results

Shear Band Formation and Propagation

The series of photographs in Figure 4 shows the formation and propagation of
the shear band as viewed by means of the markers on a modified specimen. Inter-
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rupted shear testing at ambient temperature was used to obtain these photomicro-
graphs. These photographs represent the central area of the same test specimen at
different points in the stress-strain curve.

Shear strains measured in this study are defined as follows:

a) Local plastic shear strain yp, is the plastic strain in the shear band
measured after removal of the applied external stress. It is equal to
tan 60 where 0 is the angle of deviation of the reference markers.

b)  Average plastic shear strain vy, is the plastic strain in the whole calibra-
ted part of the test specimen. Yp1 = x/h where x is the relative displace-
ment of the specimen grips measured with a caliper, and h = 4mm, the
width of the specimen’s calibrated part. The smallest division measured
by the caliper used in this study was 2/100 mm.

c) Theoretical or calculated average plastic shear strain, vy, ¢, IS obtained
by assuming that all of the plastic strain of the specimen is concentrated
in the shear band. It is given by the expression:

Ypl, calc ~ VBpl (hg/h) (LB/L)

where h and L are respectively the width and length of the specimen’s calibrated
part; and hg and Ly are respectively the width and length of the shear band.

The results will now be given in reference to the stages of deformation of the
shear stress-shear strain curve (see also Gopez, 1984 for supplementary details).

Stage I Viscoelastic Deformation: Deformation during this stage is not perma-
nent. Figure 4a shows that the markers on the specimen remain straight after
removal of the externally applied stress.

Stage II Stress Maximum and Stress Drop at Yield: The shear band forms at
the beginning of stage II. At this point the band is narrow (hg = 0.1 mm) and
shorter than the specimen (L is from 25 to 33 mm). Figure 4b, taken just after
yield shows that the local plastic shear strain is similar to the type of deformation
which is obtained on a macroscopic level (see Figure 2). The angle of deviation Qf
the markers varies from 24°to 34° (in different specimens) and the local plastic
shear strain Bpl (= tan 0) must range from 0.5 to 0.7 at the moment the band
is formed. These values compare favorably with the strain 7 = 0.7 reported by “{“
and Turner (1973) in newly formed shear bands in polycarbonate deformed 10
torsion.

Figure 5a shows the tip of a newly formed shear band. Going along the baf}d
towards the tip, there is a gradual change from a region of deformed mater
to a region of undeformed material (no band). This is more explicitly shown by
Figure 5b. The curve indicates the variation of the local plastic shear strain Y Bp!
along the shear band length. The transition region at the band tip extends ovel an
area of length 2 = 4mm. This will be referred to as the shear band front. It can be
divided into a central region of length z = 2.5mm in which the shear strain increases
linearly (d Ypp)/qx=0-2mm!, constant) and two end zones in which the slope of the
curve varies rapidly towards a zero value.

A comparison of Figures 4b and 5a shows that the shear band width i o
constant along its length.The band is slightly narrower at its ends than at the middle-
The band parameter hg used in this study will be the average band width.

4-
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To determine the distribution of plastic strain in the specimen, the average
plastic shear strain v, (=x/h) was compared with the calculated average plastic
shear strain, ¥, cac- For the specimen used in Figure 4, at the beginning of Stage
IT (Figure 4b) the plastic shear strain in the band, Yp1 1S 0.67. Since this particular
band is 32mm long (L) and 0.13mm wide (hg), ¥py, ca1c = 0.01 while Yp1 = 0.02.
These two values can be considered to be in agreement since the measurement of
small strain values has possible errors of the same order of magnitude as the strain
values just cited.

During the stress drop following yicld the shear band becomes longer until at
the end of Stage II the band is as long as the specimen (see Figure 2c¢).

Stage III Shear Band Widening: The plastic shear strain in the band Y Bp1 in-
creases slightly even as the band itself widens during this stage. For the specimen in
Figure 4c, hg =0.75 mm and g, = 0.78 while for Figure 4d (taken in Stage III);
hg = 2.4 mm and vep1 = 0.87. Figure 6 shows the comparison between Bpl and
Yp1 and v, cac, @and vp;- The curve in Figure 6 shows that the shear band does in-
deed accommodate all the plastic strain while the material beside the shear band
must be essentially undeformed.

At the end of Stage III the shear band occupies the whole calibrated part of
the test specimen. At this point plastic shear strain in the band ('prl = Yp1) ranges
from 0.80 to 0.90. Plastic deformation in the succeeding stages must take place in
the whole specimen rather than in an isolated portion of the specimen.

Stage IV Homogeneous Deformation Stage: Study of markers indicates uni-
form deviation (and hence homogeneous plastic strain) along the width of the spe-
cimen’s calibrated part. A gradual increase of Yep1 ( = ¥p1) takes place. Figure 4e
shows the central portion of the band at this stage. No new shear bands are ob-
served to form at this stage. The maximum observed local plastic strain, YBp1 18
equal to 1.2.

The evolution of the shear band parameters (as shown in Figure 7) during a
shear test is shown by Figure 8. This curves were obtained by measuring the para-
meters in several test specimens.

Specimens Subjected to a Plastic Deformation Cycle: “Cycled Specimens”

Figure 9 shows a series of photomicrographs taken of the same area in a spe-
cimen which underwent an initial plastic deformation cycle (called “cycled spe-
cimen” in this study) and which was then retested in reverse shear. Figure 9a shows
the specimen deformed up to the end of Stage III. Most of the specimen’s calibra-
ted part has undergone shear as shown by the deviation of the markers. The shear
band is in the area where the markers have been deviated. The specimen is then
brought back to zero shear strain and Figure 9b shows that at this point the markers
are almost straight. Outlines of the band can still be seen, however. Macroscopically
the specimen resembles an undeformed one. Figure 9c¢ shows that upon reshearing
Plastic deformation takes place homogeneously without formation of another shear
band. These results confirm those given in a previous paper (Gopez, 1984).

Shear stress vs. shear strain curves obtained with cycled specimens vary from
those obtained with previously undeformed or annealed specimens. Figure 19
shows a curve obtained with a cycled specimen. In this case reshearing was done in
the same direction as the original shear direction. For a reverse shear curve refer to
a previous article (Gopez, 1984).



Stress-strain curves obtained from cycled specimens are thought to give the
intrinsic mechanical response curve of the tested material (Gopez, 1983 and 1984:
G’sell and Gopez, 1984). Reference to these response curves will be made later in
the discussion of test results.

End Effects

The evolution of the band at a specimen end is given in Figure 10. These pho-
tomicrographs show that the shear band tends to pinch off and curve into the spe-
cimen grips. These observations confirm that the stress field at the specimen ends
deviates from simple shear. Similar findings regarding sheared polycarbonate are
cited elsewhere (Gopez, 1984).

It can also be verified from the photomicrographs in Figure 10 that the per-
turbation at the specimen ends is spread over an area whose dimension is approxi-
mately the same as the width of the specimen’s calibrated part. Considering that
this width is 4 mm and that the specimen length is 60 mm, then it may be safely
said that simple shear conditions prevail in most of the specimen. This conclusion
confirms the findings cited in a previous paper discussing initial results of simple
shear testing as applied to polycarbonate (Gopez, 1984).

Discussion

Review of Previous Shear Band Studies with Different Modes of Deformation

Deformation bands in amorphous polymers have already been observed in
compression (Whitney, 1963; Argon et al., 1968; Bowden and Raha, 1970), t?“'
sion (Bauwens, 1967 and 1970; Brady and Yeh, 1971) and in torsion testing
(Bauwens, 1970, Wu and Tumer, 1973). Polymers studied were polystyrenc (PS),
polymethylmethacrylate (PMMA), polyvinyl chloride (PVC) and polycarbonate
(PC).

In tension testing, the observed deformation bands are inclined with respect
to the stress axis and their appearance precedes the onset of necking. The study
of these bands, however, has been hindered by crazes which form together with the
bands and subsequently cause rupture. These bands have been compared to Luders
bands (Pomey et al., 1964) which have been observed in metals.

In compression, the deformation bands initiate at points of stress concentra-
tion ( a crack or defect, for example). By putting markers on the specimen surface,
it has been shown by several workers (Argon et al., 1968; Wu and Li, 1976) that
deformation in these bands takes place by shear. For specimens of rectangular
cross-section two perpendicular sets of bands have been observed (Argon et al.,
1968). The interaction of these sets of bands makes the analysis of the phenomenof1
difficult (Bowden and Raha, 1970). Under certain conditions (i.e., polished spec”
men edges, use of a notch situated close to a specimen end, etc.) it is possible to
suppress one of these sets of bands and study only one set propagating into the
specimen. Wu and Li (1976) and later Chau and Li (1979, 1980, 1981, 1982a and
b) have been able to make detailed studies of such bands in polystyrene. Thes€
researchers found two types of bands at ambient temperature: coarse bands an
fine bands (Wu and Li, 1976). The latter appear to be diffuse shear zones (Bowden
and Raha, 1970; Kramer, 1974) to the naked eye and only electron microscopg
has revealed the presence of fine bands in these zones. The predominance of gnn
type of band over the other seems to be related to temperature effects. Bowd®
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and Raha (1970) found a transition between diffuse zone deformation (actually
fine bands) which takes place at high temperatures and (coarse) band deformation
which takes place at low temperatures (very much lower than T,). In the case of
PMMA, coarse bands form only at very low (sub-zero) temperatures while the dif-
fuse zones predominate at ambicnt temperatures (Whitney and Andrews, 1967).
Shear bands obtained in compression have high propagation speeds which can
attain 185 mmy/s (Chau and Li, 1982a). For a small specimen (25 mm long. 9 mm
wide), the bands traverse the sample in less than 0.20 seconds. High speed photo-
graphy must be used to study these deformation bands. The bands have also been
shown to widen during propagation but this phenomenon is difficult to study (Wu
and Li, 1976) due to the short time interval in which it occurs.

In torsion, the observed shear bands develop and spread more slowly. Their
evolution is similar to that found for bands in simple shear testing: the band elon-
gates and then widens (Wu and Turner, 1973). However, the state of stress to
which the specimen is subjected is rather complex and may make the analysis of
the phenomenon difficult. Onc particular problem arises from the difficulty with
which a moment vs angle of rotation curve may be transformed into a shear stress
vs shear strain curve (Canova et al., 1982; Shrivastava et al., 1982). The cylindri-
cal form of the torsion specimen also makes observation of the entire shear band
difficult.

Characterization of Deformation Bands in Simple Shear

In contrast to the bands observed in other testing modes, bands obtained in
simple shear testing are generally free from parasite effects such as crazing or band
intersection. Only one band usually forms and propagates, initially by elongation
and then by widening. The band axis is parallel to the shear stress axis. Observations
Carried out on modified specimens with surface markers indicate that material in
the band is deformed by shear, the same mode of deformation as that applied
Macroscopically to the specimen.

No variation of specimen dimensions in the region occupied by the shear band
has been observed. Measurements done with a Tesa profilometer on a specimen
With a 2.04 mm-wide (hg ) shear band (with a plastic shear strain of 0.60, Stage III)
§h0wed that the area occupied by the band was thinner by only 0.4%. This decrease
In volume was confirmed by corresponding density increases in the deformed
Material (Gopez, 1984).

) Simple shear testing seems to produce a ‘“pure” phenomenon of plastic
Instability because (as opposed to necking of tensile test specimens) there is little
Or no change in the cross-sectional area of the deformed zone. Therefore, the same
Stress acts on the shear band and on the undeformed adjacent regions in the speci-
Mmen’s calibrated part. These two regions in the specimen have two distinct values

of shear strain for the same shear stress.

Shear Band Kinetics

General Analysis

As a first approximation the shear strain in a test specimen can be expressed
as:

Y=Ya 1 Vpl
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where 7, is the elastic deformation and vp, is the non recoverable plastic deform-
ation component. It has been shown that all of the plastic strain is concentrated
in the shear band. Using shear band parameters we can write:

Yp1 = (xg /h) (Lp /L)

where xg = displacement in the shear band
h = sheared width (in this case equal to the width of the speci-
men’s calibrated part)
Lg = length of the shear band
L = specimen length.

This relationship may also be expressed as a function of the shear strain in the
band yg (=xg/hp where hg is the width of the band, Figure 7). We have:

Yp1 = 7B (hg/h) (Lg/L)
The shear strain rate can be written as:

’).( = ').’cl + &pl
Developing the expression for ').’pl gives:
% = Yer + v (hg/h) (Lg /L) + vy (L /L) (hig /h) + (Lg /L) (hg /h)7g

Figure 8 shows the contribution of the four terms of the shear strain rate equation
during the different deformation stages. In Stage I no band is visible and all strain
is recoverable. The first term of the strain rate equation gives the total strain at
this stage (v =1 ¢)).

During Stage II, the predominant factor is the elongation rate L of the band.
The steep slope of the Ly /L curve in Figure 8 confirms this. The second term of
the strain rate equation, g (hg/h) (Lg/L) thus becomes the contributing term.
At the end of Stage II, Ly no longer changes and Ly becomes zero, Band widening
now becomes more significant and the third term, yg (Lg /L) (hg/h) should repre-
sent what happens in Stage III.

In Stage IV Ly and hg are both zero and only the strain rate in the bgnd
vg contributes to the plastic strain rate. The last term of the strain rate equation
defines this stage.

Internal Stress of the Specimen in Stage II

The existence of localized plastic strain gradients at the shear band tips induces
internal stresses in the specimen. These stresses must be concentrated at the shear
band ends but would not be due to a change in specimen cross-sectional area:
Rather, these would be due to the shear band itself.

These stresses were estimated using two methods:

(i) By theoretical calculations based on the concept of a pilejup of
infinitesimal dislocations (this method is also used by geologists t©
predict the internal stresses at the tip of a shear fissure in a ro¢
mass)

(ii) By photoelasticity



The stress concentration at the shear band tip is due to the previously des-
cribed transition region (Figures 5 and 1la) at a shear band tip. This transition
cannot be obtained without producing a stress field at the shear band tip. To cal-
culate this stress the strain gradient at the band tip may be considered to be a dis-
location pile-up (Figures 11b and c) with a Burgers vector f(x)dx (Li, 1982) such
that:

d 6xg

dx

B(x) =

where dxp is the displacement at a point in the band tip.

If the shear strain is assumed to be distributed throughout the shear band
front, the maximum shear strain in the band will be:

+Q/2
B=Xp = J B(x)dx

-2

The shear stress resulting from such a strain distribution is given by the expres-
sion:

+oo +9/5
7(x) = uB(x"dx' 1 ~ MB(x)dx 1
2n(l-v) (x-x) 2n(1-v)  (x-x")
i x=-%h

where 7(x) = shear stress at point x.

The appropriate function 8, corresponding to the shear strain gradient at the
shear band tip must now be chosen. The details of the solution are given in the
Appendix.

The B, function represented on Figure 12 was found to best fit the data ob-
tained in Flgure 5. The transition region has a central portion of length z in which
lthe shear strain gradient is constant and end zones each measuring (2-2)/2 in
ength.

The internal shear stress 7p produced at the band tip is now given by the

following expressions:
2% ) < of
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Figure 13 shows the variation of the stress 7 in region around the band tip. The
maximum value of 7 can be found betweenx =24 and x =Y in the transition region.
This is actually at the tip of theband. Using u=820MPa,v=0.4,2=4mm, B=75pm
and z/Q = 0.8, the value obtained for 7 .. is 45.2 MPa. This is approximately
15 percent higher than the applied stress which forms the shear band at the begin-
ning of Stage II.

In this preceding calculation only the stress due to the shear strain gradient
in the shear band tip has been taken into consideration. The long range stresses duc
to the strain gradient in the other shear band tip must also be included in the calcula-
tions (Kramer, 1975; Chau and Li, 1981). The dislocation analogy can still be used
but this time because of the distance between the tips, it will no longer be neces-
sary to consider a distribution of infinitesimal dislocations at each tip. The case of
an edge dislocation dipole (Figure 14) will be considered and the shear stress
produced on one shear band tip by the other is simply:

—uB 1
2r(l1 —v) Lg

The negative sign indicates that this stress acts in a sense opposite to that of
the applied stress and opposite to the positive stress peak (in Figure 13) due to the
shear strain gradient. Using the values, u = 820 MPa, v = 0.4, B = 75mm (obtained
from Figure S), 7p = 16.3/Lg where 7 is in MPa and L is in mm. It is to be noted
that 7p is inversely proportional to the length of the band. The shear stress Tp is
significant when the band is short (rp - 3.3MPa for Ly = Smm) and gradually
diminishes when the band becomes longer. This stress can be interpreted to be @
reciprocal attraction force between the shear band tips which are taken to behave
like a dipole of edge dislocations with Burgers vectors of opposite signs —B, + B
(Figure 14).

The total stress at a point in the specimen will therefore be the sum of the
applied stress and the internal stresses 7t and 7 produced at and by the shear
band tips. In the plane containing the band, Figure 15 shows that the shear stress
distribution curve has a peak in front of each shear band tip. These regions of high
stress lead to localized deformation and to the propagation (elongation) of the
shear band.

T =

To demonstrate the stress concentration at each end of the band, a specimen
deformed up to the beginning of Stage II was polished and examined in a pO{afl'
scope. From this photoelastic analysis, the direction of the prevailing principa
stresses can be obtained from the isoclines, and the value of the difference in prin-
cipal stress (0,-07) may be calculated from the isochromes (Frocht,1941; Robert,
1970). An isocline represents the locus of points of optical extinction at which.the
principal stress directions are parallel to the optical axes of the polarizers. Isoclines
are black in both monochromatic and polychromatic (or white) light. An isochrom®
passes through points with the same maximum shear stress (and the same difference
in principal stresses). In white light, the dispersion of colors makes isochromes
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black (zero order, zero maximum shear stress) or different colors (higher orders).
In monochromatic light the fringes (isochromes) are white or black. The number
of black fringes (which corresponds to the order given by the tint of passage in
white light) allows the calculation of the stress at a given point by the relation:

nA
Ao =
Ce
where C = coefficient of photoelastic sensitivity of the material
A = wave length of the light used ’
e = specimen thickness
n = number of fringes (or orders)

The coefficient C of polycarbonatc was determined in tension to be 8.54
105 MPa-l.

In Figures 16 a and b, photographs taken at different orientations of the shear
band with respect to the optical axis of the polarizers (vertical in this case) show
that the isoclines change in appearance with the orientation. The diagram in Figure
16¢ shows three of the isoclines observed (at increments of 30° in the orientation).
Eight points of intersection (singular points) can be observed on either side of the
shear band. Since the principal stresses cannot possibly have all of the orientations at
a single point, these points must be points of zero principal stresses.

Figure 16d, taken with quarter wave plates oriented at 45° with respect to
the polarizer’s optical axis, shows only the isochromes. The singular optical points
are immediately seen to be occupied by black isochromes, thus further supporting
the conclusion that they must be points of zero stress. These points must also be
of zero order. Starting from one of these points (the one above and to the left of
the band for example) and going towards the shear band tip, three fringes can be
Stieen with the last one close to the band tip. The stress at this point is there-
ore:

nA
Ao = = 8.1 MPa
Ce
with A = 5650 A°(white light)
e = 2.40m
n=3

This verifies the existence of a stress at the band tip. The measured value is
lower than that calculated for by using the dislocation pile-up model. It is quite
D(?ssible that the real stress is actually greater than the value cited above. The other
fringes may not be visible due to the limit of resolution of the method used.

Plastic Flow at the Band Tip

The plastic deformation of the material at the shear band tip is due to three
®Ssential factors:

a)  multiplication of internal structure defects

b)  high local shear strain rate

¢) stress due to macromolecular orientation
11



In a previous article (Gopez, 1984) the concept of clementary microscopic
defects linked to the mechanism of plastic deformation was introduced. If one of
these defects produces an elementary shear displacement b, and if their density is
p, then assuming these defects to propagate at a velocity v, enables an estimation
of the plastic shear strain rate by using Orowan’s equation:

’;p] = pr

In an annealed undeformed specimen, the initial defect density p; may be consi-
dered to be small such that a given strain rate may not be imposed until one of the
following conditions is satisfied:

(i) a rapid increase in the number of defects in order to raise the value
of p
(ii) anincrease in the shear stress to produce a very high value of v.

The first condition cannot be satisfied instantancously because it can be
shown (Gilman and Johnston, 1962; Johnston, 1962; G’sell and Jonas.1981) that
the multiplication of defects requires the accumulation of a certain amount of
plastic deformation. It is therefore understandable that plastic deformation is local-
ized and concentrated in a shear band because the local stress at the band tip ()
allows the needed increase in v during the time in which the number of defects
increases slowly. The local stress concentration does not require a very high value
of the applied stress. By the same argument it can be explained why the plastic
deformation at high temperatures or of specimens subjected to a plastic deform-
ation cycle (“cycled specimen’) is homogeneous. In the *“‘cycled specimens’ the
initial defect density p; is already high enough and uniform enough in the whole
specimen to allow immediate plastic flow without a high value of applied stress.
At high temperatures, the mobility of the molecular chains is such that the defects
form rapidly without high energy barriers to be overcome by additional stress.

It will be shown, however, that localized plastic deformation requires local
strain rates which are actually higher than the imposed nominal strain rate.

In the plane of the band, an element of material is subjected to a high strain
rate at the instant that it is reached by the shear band tip (shear band front). As 2
first approximation approach, the local shear strain gradient d-y/dx at the band tip
can be assumed to be linear and the rate at which the band elongates can be de-
signated by L. The instantaneous strain rate can be expressed as:
').’T = dy = dy dx

E dx dt
=7 Ls
Q 2

where 2is the length of the shear band front.

For deformation in Stage II we previously obtained the expression that
Y~ Yp = hp 78 LB
h L
Combining the two strain rate expressions gives:

ip = 4 L h
2 2 hy
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where 7 is the nominal imposed strain rate.
For =4mm, L = 60mm, hy =0.1 and h = 4mm. the local shear strain rate at
the band tip is equal to:

Yr = 3007

Knowing that the strain rate sensitivity cocfficient of the material (Gopez, 1984),
m = 9In7/0¢ny = 0.03, T(’);T. v) is found to be 20% higher than 7(y, ). A part of
the stress concentration at the band tip is therefore used to give
the extra stress necded to produce the high local strain rate.

The deformation of macromoleccular chains under the action of a given shear
stress is limited by a restoring stress which tends to return the chains oriented by
the applied external stress to their initial random and isotropic configuration.
This effect certainly differentiates an amorphous polymer from an amorphous
metal. In the latter, slip can take place without strain hardening and the deformed
metal cannot recover its initial configuration and dimensions by annealing. In the
Case of polycarbonate, the strain hardening observed in shear testing during the
steady state plastic deformation regime (Stage IV or “‘cycled specimen”) may be
taken to correspond to the macromolecular chain orientation effect. Material in a
shear band deformed up to vy pi 1s then subjected to an internal stress due to mole-
cular orientation:

T = oT \ * g

or
oY /v

At 23°C, 87/3y = 20 MPa which gives 7,, = —10 MPa for y; ~0.5.

All of the stresses affecting plastic strain at a band tip during Stage II may
now be taken into consideration:

T*(').’Tapi) + Tor(7B) = T;,+TT+TD(LB)

The left side of the equation gives the additive form of the expression for.the total
flow stress of the polymer at the shear band tip. The right side gives the sum of the
applied stress and the internal stresses due to the shear band tips. The total applied
Stress needed may be obtained by rewriting the expression:

Ta = 737,00 4 Tor () = 7 —Tp(Lg)

During the elongation (extension) of the band, each of the terms remains constant
Except for 7p whose absolute value decreases as the length of the band increases.
This decrease —7p seems to be the reason for the stress drop after yield on the
Stress-strain curve. The magnitude of the stress drop (=~ 3 MPa) would indicate that
the band would be about 5mm long at the moment of its formation.

Widening of the Band (Stage III)

In Stage III the shear test specimen contains two zones in its calibrated part
Which have different strains but are under the same stress. Beside the deformed
Material in the shear band will be found totally undeformed material. The same
Str"fSS applies to both regions because there is no change in cross-sectional area
Which could result in a stress concentration.

13



No detailed mechanism of shear band widening in glassy amorphous polymers
has been proposed to date. For crystalline metals the widening of Luders bands and
shear bands in general has been explained by cross slip mechanisms (Pomey, et al.,
1964; Friedel, 1964). In polymers the widening of deformation bands in polycar-
bonate deformed in torsion has been observed by Wu and Turner (1973) but they
did not offer a detailed analysis nor advance a mechanism.

The defect theory may provide a mechanism for band widening. The
premises of the mechanism are:

a) nucleation of defects is more difficult than their movement (or
migration)

b) a plastically deformed zone contains the critical defect density.

Acceptance of these two premises leads to the statement that the applied external
stress makes the existing defects in the shear band migrate towards the undeformed
zones and results in an increase of the local defect density in regions near the band
interface. It is also possible that the arrival of migrating defects may trigger more
nucleation. In this way, the critical defect density is more rapidly attained at the
interface and the shear band widens. This takes place at a stress lower thanthat needed
to start another band (Tapl = Tnhin Of stress drop). At this stress level, nucleation of
defects is difficult and the formation of another band elsewhere in the calibrated
portion of the specimen cannot take place. Widening then becomes the favored
mechanism for continued plastic deformation.

At the beginning of Stage III, Iy = L and LB becomes zero. The strain rate is

now expressed as:
T = Yp1 = Tp (ﬁn/h> + le/h) s

The term containing HB, vg (hg/h) is important at the start of Stage III while
the homogeneous deformation term becomes predominant at the end.

The factors affecting the widening of the band will now be discussed:
a) widening stress

This must be equal to the applied stress 7,. Under the action
of this stress, widening of the band must take place without any
stress concentration.

b) macromolecular chain orientation stress (7,;)

In the same manner as in Stage II, this stress is due to strain
hardening and may be expressed as 7., = (07/0y)y - Yg. The shear
strain 7Yg in the band increases slowly in Stage III and consequently
Tor must also increase.

c) strain rate effects

Additional stress 7, may be needed to make the material at the
band interface deform rapidly and contribute to the widening. To
calculate 7, the strain rate -y; at the advancing band interface must
be calculated. Figure 17 shows a band interface as seen on a speci-
men with markers. The variation of the shear strain < along an axis
y perpendicular to the shear axis x is represented in Figure 18. In
the same manner as for a band tip, a characteristic dimension of this
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interface may be defined as w. In this region, the shear strain varies
from zero (undeformed material) to 7y (material in the band).

The local strain rate v; at the interface is given by the relationship:

._ 9 _ 3y _m hp
Yi T Tt 3y ot w2
But R h < g >
u o Y- — 7
B hy h B
Assuming the second term in the parentheses to be negligible, this expression
reduces to: . .
hg =~ h(y/vp)
and this gives:
] _ l h L]
n 2z w7

Since w is very small the strain rate ’).'i of the material at the band interface is very
much higher than the nominal imposed strain rate v during the test. Due to this
strain rate difference, it is necessary to apply an extra stress 7¢ for widening to
take place. If h/w = 50 (w = 0.08mm), then ¥;=25v and since 7(y;)/7(y) = (y;/7)™
this gives 7(y;, v) = 1.1 7(7, 7).,

In order to explain the evolution of the shear-strain curve in Stage III, the
level of stress needed to give the same strain at the same local strain rate in the
absence of shear band must be known. The test curve of a ‘“cycled specimen”
(curve 2, Figure 19) could furnish this information since the whole specimen is
already uniformly deformed at the start of the test.

The shape of the stress-strain curve in Stage III may now be explained. In
particular, it must be explained why the stress increases slowly in this stage instead
of remaining constant as in the case of Luders band propagation. To answer this
question the construction of Figure 19 will be used. The plastic shear strain YBp)
increases slowly in Stage III and Figure 20 shows the variation of YBpl with total
shear strain (y = v + Yp1)-

Consider a point on the 7 — < curve which is in Stage III, v = 0.27. From
Figure 20, v, = 0.67. This value was obtained for the unloaded specimen, and to
get the total strain (under charge), the elastic strain v, must be added to 0.67.
Figure 21 provides a direct reading correction curve which gives yg total = 0.87.
The corresponding stress needed to have this total strain is now obtained from the
curve for the ‘““cycled specimen’ (7 = 32.6 MPa Figure 19). This is compared with
the corresponding stress at the corresponding point on the 7—y curve, (7 = 35.6
MPa). The difference between these two values is due to the high value of the local
shear strain rate. This can be calculated: (y;/y)™ = 7(y, v;)/7(v,¥). This gives v; =
19 v implying that h/w =19 and W = 0.095mm. This value for w is in good
agreement with the value obtained (0.08mm) by measuring the width of the
lateral transition zones in photographs of specimens.
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It can now be said that during widening, the observed stress is essentially
affected by:

a) the plastic shear strain in the band, vy pl

b) the local shear strain rate which depends in turn on the local
shear strain gradient at the band interface

Homogeneous Deformation (Stage 1V)
In Stage IV, the strain rate is simply written as

Y = Y t T

because Ly =L, Ly =0and hg = h, Ay = 0. However, it seems that hg while having
a very small value still continues to have an effect. Consequently the local strain
rate at the band edges may still be high and this may explain the vertical offset
between the two curves in Figure 19 during Stage IV. This offset decreases up to
the end of the test and this signifies that h decreases as the shear band spreads
into the specimen grips.

During this stage, deformation continues by an increase in yg. The strain
hardening mechanism becomes more significant and the slope of the r—y curve
becomes steeper.

The deformation at this stage is apparently homogeneous. On the molecular
scale, however, the nucleation and movement of elementary microscopic defects
must continue to take place. The defect density may be considered to remain con-
stant throughout Stage IV and the prevailing density will be characteristic of the
imposed strain rate yg p1 (G’sell and Jonas, 1981).

Temperature Effects

The plastic deformation model just discussed may also be used to interpret
the effects of temperature on the intrinsic mechanical response of polycarbonate
in simple shear.

At low temperatures, multiplication of defects requires a very high stress due
to the small amount of available thermal energy. A stress peak of high amplitude
is then to be expected at yield. The strain hardening coefficient as shown by the
slope of the stress-strain curve after the yield point will be high (or steep) because
of the low mobility of molecular chains in this temperature range. This predicted
response is represented in the form of the intrinsic stress-strain curve of the material
(local true shear stress vs local true shear strain) in Figure 22 (curve T;). With such
a material response, if the stress is maintained at the maximum of the stress peak
at yield, the strain should stabilize at a low value v,;.

At high temperatures (T; close to T,), the nucleation of defects is easier and
does not require an overstress (only a small stress peak is needed at yield). The
strain hardening coefficient is likewise small because of the rubbery behavior of
the material at this temperature. The strain 3 corresponding to the maximum
stress at yield will be small but not for the same reasons as at low temperatures.

At intermediate temperatures (T, =~ T, , for example) the stress peak and
strain hardening coefficients should take on intermediate values. The resulting
stabilized strain at the stress peak v, should be relatively large.

16



Considering this intrinsic behavior the results of a shear test may now be
understood. The formation of a shear band is favored by a high intrinsic yield stress
peak and a low subsequent strain hardening coefficient. This makes the pheno-
menon more observable at intermediate temperatures. The system favors a con-
figuration with two strain levels (localized plastic deformation) to homogeneous
deformation. At low temperatures the band tends to form but the strain hardening
rate is so high that the whole specimen must be deformed. Around T, the defects
multiply rapidly in the whole specimen and the band has no tendency to form.

Conclusion

Shear band formation in polycarbonate deformed in simple shear has been
extensively studied. Results show the formation and propagation of a single shear
band. The stages of formation and propagation can be correlated with the shear
stress (7) vs. shear strain () curve.

The absence of cross-sectional change in test specimens showed that shear
band appearance was not due to mechanical stress concentration effects. Shear
band elongation was shown to be due to a stress at the shear band tip induced by
the strain gradient and the interaction with the other band tip. Part of this stress
was needed to produce a local strain rate very much higher than the nominal
strain rate.

A mechanism of shear band widening was proposed. The basis was a defect

theory of plastic deformation previously proposed by a number of investigators.
The tendency to have heterogeneous plastic deformation was accounted for by the

same defect theory.

The observations done on “‘cycled specimens’’ verified that plastic deformation
was immediately homogeneous and that no new shear bands were formed in these
Specimens.

The end effects were also investigated using specimens with surface markers.
Results confirmed previous observations obtained for sheared polycarbonate.
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8) Stage | after unloading o b) Beg:nning of Stage Il

Figure 4. Evolution of the shear band during a simple shear test shown by refer-
ence marks on a modified specimen (PC 133).

€) Beginning of stage 111

Figure 4. Evolution of the shear band during a simple shear test shown by refer-
ence marks on a modified specimen (PC 133).
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Figure 5. a) Shear band at the beginning of Stage III (PC 133).
b) Variation of local plastic shear strain at the band tip.
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Figure 8. Evolution of shear band parameters during band formation and propa-
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Figure 10. b) Shear band tip,
Stage III (PC 133). Figure 10. c) Band end in Stage IV.
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Figure 13. Calculated stress 7, at a shear band tip.

Figure 14. Shear band viewed as an edge dislocation dipole.
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Figure 15, a) Shear band geometry.
b) Shear strain distribution along shear band.
c) Shear stress along band, taking applied stress into consideration.
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Figure 16. Resumé of photoelasticimetry results (PC 75).
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Figure 17. Lateral shear band interface showing the size of w.
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Figure 22. Temperature effects on the intrinsic mechanical response curves.

Appendix: Stress Induced in a Region with Distributed Shear Strain

At a shear band, observation of surface markers on specimens indicate that

the local displacement varies from xg = B (in the band) to zero over a shear band
front of length £ = 4mm.

Defining the x axis to be along the band length the displacement xp will vary
along the band as shown by Figure 11a (cf Figure S). According to Li (1982) such
a curve corresponds to a shear strain distribution with a shear strain gradient f =
06xg/dx. The function f(x) may be defined to represent the slope of the curve
6 xg (x). Figure 11b describes this function. By definition we have:

+ o0 +9/2
B(x)dx = B(x)dx = B
— 0o _Q/z
It is proposed to calculate the magnitude of the local shear stress induced by
such a shear strain distribution. The local shear strain gradient B(x) will be consi-

dered to be a pile up of infinitesimal dislocations with Burgers vectors (x)dx and
situated at — £ £ x < + £ (Figure 11c¢).This model was already proposed by Li

(1982). The resulting shear stress 7(x ) may now be written:

+ o0 + 22
pp(x)dx’ 1 MB(x")dx’ !
7(x) = 2n(l-v)  (x-x) 2r(1-v)  (x-x")
xl = _ o0 x' = - Q/z
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A representation of the function B(x’) which will allow the calculation of 7(x)
must now be found. A simple approach will be to use a step function (Figure Ala).
Such a function will, however, have discontinuities at x =+ _£ and the shear stress

will be infinitely big at these points [ 7(=%2) = — o and T(sz) = + o] . A second
possibility will be to use a triangular function (Figure A1b). This will give the maxi-
mq?g value of §, to be B, = 2B/1. The shear stress 7(x) for 0< x < £/2 will now be
written as:

0 %2
2B 1+2x 2B _2x ,
r(x) = K (_x,ﬂ) i+ (1 /Q) dx
2n(1-v) £ X-X 2n(l-v) & X —X
- 0
) u 2B . .
Choosing A = and making a variable change such that
2w(1 - v) Q
(x — x") = u gives us:
X x-%
1+(2/9) (x—u) du+ 1 —(2/Q) (x—u) du
T(X) = —A
u u
x+ 22 X

The magnitude of 7(x) at different points may now be calculated.
a) at x ={/2, the equation reduces to

r .
22 0
22 2u/2
x) = — A __7(/_‘2)‘1 du + —‘l‘l- du
) 22

which gives 7(x) = 1.39A.
b) at x =0, by symmetry, 7(0) =0

c) away from the shear strain gradient (x >> 9/2), the effects of the
pile up may be viewed as those due to single macroscopic edge dis-
location with a Burgers vector b =, 2/2 located at x' = 0, we there-

fore have:
u B 1 Q
2n(1-v) 2 X 2x
29
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d) inside the gradient (0 < x < %/2)

x+Q/2 X+Q/2 x+Q/2
. )
7(x) _ du + 2% du B 2 qu+
A u g u

X X X
X X X

du 2x du 2

_ = _ —— du

u Q u

X—2/2 x—%/2 x—L/2

For the integrals containing [ du/y, u = 0 represents a singularity but this
actually cancel out because

X X
du _ du
u u

x—2/2 R/2

and the resulting equation is:

T 2x - L 2x Q 4
_= | — +1)1 —+t1 ) = (1 = —) 1 ——1) 0&x £ —
A <2 >°g <2x > ( D °g<2x > T

The following table gives the values of 7/A at different values of 2x/g.

2x/g | 0] 001] 01 |02 |04 |06 |08 |09 |095] 1.0
7/a | o] 01 | 066|104 151 1.73] 1.74 | 1.64 | 1.55 | 1.39

The shear stress 7 attains a maximum value inside the pile up. This is approximately:

uB 2
~17 —M8M —
Tmax m(1—v) %
for B = 0.075 mm
g = 4mm
v = 04 Tmax — 14.2 MPa

This maximum value is not very high due to the rather conservative choice of
the triangular B(x) function. These calculations can be improved by taking the
form of B(x) as that shown in Figure A.1lc. This function seems to conform better
to the shape of the real function as given by Figure 12. The expression for 7 (x)

is now given by:
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i —Z/3 +2/5 % :
7(x) = Mo l (2x +9) dx' + dx . 1 (=2x' +Q) iy
- —2/2 k) z/y
Choosing A = _& and u = x—x'
2m(1-v)
x+%/2 x+212 x—2/2
Q+2x+2
T(x) 1 2+2x—2u . du 1 x¥2u
A -z u u u Q—z u
L
x+Z/2 x—2/[7 x—*/2

Since the 7(x) function is symmetrical with respect to the origin, integration
may be done only in the interval 0 < x < 2/2. Taking the discontinuity of the
/u function at u = 0 into consideration, the integration will be split into two ex-
pressions valid in the intervals 2/7 < x < Q/z and 0 < x < Z/p.

a) in the interval Z/7 <x < ¥
x+ 22 x+2/2 ¥2 —x x—2/2

T Q+2x du du L-2x du —-2x du
—_— -+ _ _ +
A L—z u u L—z u L—z u

X+Z/2 X—Z/2 € €

The last two terms take into account that u=0at x = 2/2, in a similar manner
as for the previous calculations it can be shown that:

x—22 x—Z[2

du du
u u

— X
x—2/7 2/2

Choosing 2/q = «, the expression becomes:

T () e () @) e () )
w (-20)- (-2 >Qn<—— )] et




The following table gives some values of 7/ p fora=0.8.

2x/? | 0.82 [ 0.85 | 0.90 | 0.95 | 0.98
/A | 3.48 | 3.73 | 3.89 | 3.79 | 3.56

b) intheinterval 0 £ x £ j_
x+2/2 Z[9—x x+Z/2 Q)5 —X
T _ 0+ du du N du R—2x du
A -z u B u u 0z u
x+%/2 € € €

In this case u =0 at x = /9. Using « = Z/g, the final expression becomes:
1 2 Q 2 L
T @+L>Qn1+_-a+_wn1+“_
A (1—a) 2 2x L 2x
2 Q 2 Q
flo- ) o (2 o (1= (= 1
Y 2X L 2x
z

for0Lx &« =
2

Using the same value for o (= 0.8) the following table completes the preceding
one. The curve showing 7/ 5 as a function of X is shown in Figure 13.

2x/g| 0.20 | 0.50 | 0.70 | 0.79

/A | 045 126 | 2.12 | 3.22

The value of 7(x) attains a maximum value given by the expression

T = 3.89 a 2B
max ' 2w (1-v) (1 + @)
For B = 0.075mm
¢ = 4mm Tmax = 45.2 MPa
v =04
u = 820 MPa
a =08
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