“The three-dimensional integral-momentum
formulation has been shown to be effective
in providing approximate solution to the
corner layer problem.”’
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Abstract

An integral-momentum analysis is applied to the problem of the laminar
boundary layer along a rectangular corner. It involves an assumed self-similar
velocity profile defined by functions with prescribed properties. Two case exam-
ples are provided. Reasonably good agreement is obtained between the results of
the present study and the available numerical solution of previous workers on the
problem.

Introduction

The viscous flow along a rectangular comner is characterized by the presence
of three regions depicted in Figure 1: a corner boundary layer, a pair of plane
boundary layers, and a potential flow or free stream region. The two plane layers
mutually interact in the corner layer so that the latter also grows in area as the
plane layers thicken in the downstream x-direction. A three-dimensional secondary
or cross flow is also induced.

Numerical solutions of the partial differential equations governing laminar
corner layers were obtained by Carrier (1947) and later, with an improved scheme,
by Rubin and Grossman (1971). Rubin (1966) derived a solution by the method
of matched asymptotic expansion. A numerical solution for the turbulent corner
layer was developed by Shafir and Rubin (1976).

The present study aims to provide an approximate solution to the laminar
corner layer problem by means of a three-dimensional integral-momentum analysis
which involves an assumed self-similar velocity profile for the x-component of
velocity. Specifically, the integral formulation seeks to predict the width w(x)
of the corner layer in relation to the thickness §(x) of the plane layers which has
been predicted by the two-dimensional integral momentum approximation found
in the literature (Schlichting, 1979).

Self-Similar Velocity Profile

With reference to Figure 2, the assumed self-similar profile for the x-com-
ponent of velocity, u(x, y, z), is prescribed as follows:
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Figure 1. The three regions of flow along a
rectangular corner

w (x)

Il_

Figure 2. The x-component velocity profile, u(x,y,z)
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In the plane layer attached to the xz-plane:

u = Uf[y/8(x)] (1)
0<y<& ) z=w(x).

In the plane layer attached to the xy-plane:
= U f[z/8(x)] (2)

u
0<z<6(x); y=w(X).

In the comer layer, A (x):

wu=Uf q{p(y/w (x)) p@z/w (x))}
q {p(d(x)/w (x))}

Uf(+q{ply/wx)) pz/w(x))}) 3)

wherein the domain A(x) of (y,z) is defined by

p(y/w(x)) p(z/w(x)) < p (8 (x)/w(x) )
and 0 < vy, z < w(x)
and r is the ratio 6(x)/w(x) assumed to be constant.

In the free-stream region, outside of both corner and plane layers:

u = U, a uniform free-stream velocity. “4)
The required properties of the dimensionless functions f, p, and q are given
below:
(a) Properties of f

(b)

1. f(0) =0 (No slip condition on a solid boundary).

2. f(1) =1 and (1) = 0 (First-order continuity of the boundary layer flow
with the free stream).

3. f(0) > 0 (Positive shear on a solid boundary).
4. f (a)is continuous and monotonically increasing in 0 < a < 1.
5. £ (@)<0in0<a<1 (Absence of inflection point).

Properties of p and q

1. p(0) =0 (No slip condition on a solid boundary).

2.  p(1) =1 (Zeroth-order continuity of the corner layer flow with the plane
layer flow).

3. p(a )is continuous and monotonically increasing in0 < a < 1.
4. qis the inverse of p.

5. p’(0)=1/q’(0) > 0 (Positive shear on a solid boundary).

According to Equation 3, the assumed isovelocity contours or isovels inside

the corner layer are described by the product of functions p(y/w(x) ) p(z/w(x))
= constant, which is symmetric in y and z. From the properties of p and q, it can
be easily verified that Equation 3 matches with both Equations 1 and 2 along the
common boundaries of the corner layer with the two plane layers.
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CONTROL VOLUME

Figure 3. The control volume for the integral formulation

Integral Formulation

A control volume defined by 0 < s < x and (y,z) €, A(x) and sketched in
Figure 3 is adopted for the integral formulation of the mass and momentum

conservation laws.

Defining Q’ as the volumetric rate of cross flow which leaves the control
volume, the incompressible-flow continuity equation is written in integral form

as
U [f dydz = Q"+ [fu(x,y,z)dydz
A(Xx) A (x)
(free-stream inflow) = (cross flow) + (corner layer outflow)

Introducing the dimensionless coordinates o = y/w(x) and 8 = z/w(x) and the
self-similar velocity profile, the continuity equation becomes

Uw? (x) [fde df = Q+Uw2(x) [ffl—a{p(@p @} ]| do dp
A

A
Hence,
Q'=Uw?(x) [E@)—F @] (5)

where E(r) = [fda dB
A
F(r) = f/fl—a{p(@ p@)}] da dp
A

A = domain of (a,f) in the corner layer.
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The x-component integral-momentum equation applicable to the control
volume is

ffu? (x,y,z)dydz + QU -U? ffdydz
A(x) A(X)

(6)

. . ou (x au
= __ (X (x) dv + V() Sl dz Is
£ {‘{w g az |z=0 Y jc: g oy |y=0 28

The terms on the left-hand side of Equation 6 are the momentum efflux
through the corner layer, the momentum efflux in the cross flow, and the momen-
tum influx of the free stream, respectively. The right-hand side of Equation 6
represents the total viscous shear force exerted on the fluid by the two perpen-
dicular flat plates. The pressure gradient is taken to be zcro.

Upon substitution of the dimensionless coordinates, the sclf-similar profile,
and the value of Q’ (Equation 5) in Equation 6, the latter becomes

U2 w2 (x) [ff2 [—:q{p(a)p (ﬁ)}] da df + U2 w2(x) {E(r) — F(n)}
A

X wWi(s ’ ' ’ ' d
_Urw2(x) ff dedB= - f [f “Ur'(0) 4'(0) p (O — p (—’— —
A ° '

[e) w(s)/ wi(s)

O UFO) & S va'(O)q'<o>p'<0)lp< ) 5
r

r o w(s) w(s) w(s)
w(s)

1 dz
(x) "0y —
+ P vuf © r w(s) ] ds

w(s)

The above equation further simplifies to

U2 w2(x) {F(r) = G(@r) } = 2vUH—:— IRt L IR (N

w(s)

where G() = /] {* [,iq {p(@)p (ﬁ)}] dee dB

H = f'(0)q'(0) p’(0) = f(0)
I, = ! p () da.

The resu_lt given by Equation 7 has to be matched with the result obtained
by the two-dimensional integral momentum analysis of the plane boundary layer

(Schlichting, 1979, p. 204):
_  /2vHx
5 (x) = ul,

where I, = fol f(y)[1 - f(y)] dy.

(8
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Replacing § (x) by rw (x) in Equation 8 gives

wix) =/ 2 )

U[ll'

It follows from Equation 9 that

v o/ x

w(s) s
which may be substituted on the right-hand side of Equation 7.

Integrating the right-hand side of Equation 7 yields
vH

w2 (x) { F) — G} = —— (I, + Dx
which gives
_ 2vH (Ip +1)x
wix) \/ U [Fn -Gl 1 (10)

Equating the right-hand sides of Equations 9 and 10 provides the following
equation in the unknown r = §(x)/w(x):

F(-G@m =({,+Dr (11)

Equation 11 is solved for r in the next sections for assumed forms of the
functions p, q, and f.

Case 1. p () = «, q(o) = «, arbitrary f.
The isovels inside the corner layer under this case are hyperbolas given by
yz = constant. The following integrals are evaluated:

— rl = rl =1
Ip—fO p(oz)doz—f0 o do >

R — G = 17 17" gy [1 - 1] decds
g=0

a=0

#1571 fapir) [1- £ (@B | de a8

=r [Iz +1; ln(l/r):l

where I, = [ [ f(@f) [1 _f (aﬁ)] do dp.
Applying the above integrals to Equation 11 yields the expression for r:

r = exp [L,/I; —3/2]. (12)
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The area of the corner layer is easily evaluated as
A, = 82 L {1+1na/m) (13)

Case 2. p(a) =sin (—;- o), q(a) = ’727 arcsin («), arbitrary f.

The isovels inside the comner layer are quarter ovals given by sin (% T y/w(x))
sin (—; m z/w(x) ) = constant. Since p(1) =1 and also p'(1) = 0, the corner layer

flow is continuous up to the first order with the plane layer flow. The following
integrals are evaluated:

I, = flp(oz)doz = flsin(lﬂ'oz)doz = 2/n
p o o 2

_ The integral [F (r) — G(r)] is more conveniently evaluated by first transform-
ing the orthogonal coordinates from («,8) to (A, 1):

sin (\) = sin(—;ﬂoz)sin(%ﬂﬁ) 0< A< %m)
n = cos(—;ﬂoz)/cos(%nﬁ) 0<n<=)

The Jacobian determinant J = 9(A\,n)/9(a,8) can be derived as

2
J = ’; \/(n2 + 1)2 — 412 cos2 A /cos.

Hence,

_1 .
F (r) — G(r) =fA_0—2“f(i—’r‘) [14(%)] [T _dnda

A= n=o J

But /7~ -d—J" can be shown to be expressible
n=o

n== d 4
as [ J" = cos A K(cos2))
n=o n?

whgre K(cos2\) = complete elliptic integral of the first kind with parameter
cos? A:

m/2 de

K(cos2 \) =
( =, v/ 1 — cos2A sin26

(Milne-Thomson, 1950).

Substitution of the above integrals in Equation 11 gives the following im-
plicit equation for the unknown r (with X replaced by % 7 1)
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f7=] f(y) [1 - f('y)] cOS (—;— myr) K [cos’- (% 07 (;—n dy)

Y=o

2
= 71— (2+DI,. (14)

The integral on the left-hand side of Equation 14 was numerically evaluated
for trial values of r by means of the trapczoidal rule, with discrete interval
Ay = 0.02, utilizing linearly interpolated values of K from Milne-Thomson’s (1950)
table. For an assigned function f, the correct value of r was located by interactive
searching with a microcomputer.

The area of the corner layer is evaluated from

=1 1
A, = 82 (x) 4" cos (—;_ myr) K [:cos2 (-%— ™) (- wdy) (15)
Im Y=0 -
using the same numerical quadrature.
Table 1
Results of Computations
Case 1 Case 21
f (o) p(@=« P(C!)=sin(—21r0t)
Ip=1/2 Ip=2f
r R Ac/62(x) r R Ac/82(x)
sin (%ﬂ a) 0.6651 1.5035 2.1166 0.5396 1.8534 2.8486
—3 o— % o3 0.6489 1.5411 2.2076 0.5265 1.8993 29553
20 — a2 0.7110 1.4065 1.8860 0.5757 1.7370 2.5823
2a — 203 + o 0.7863 12718 1.5775 0.6362 1.5719 2.2095
f(a) I I 8(x)/vvx/U
sin (37) 0.1366 0.1492 4.7957
% o — ;, o3 0.1393 0.1487 4.6407
2 — o2 0.1333 0.1545 5.4779
2 — 203 +at 0.1175 0.1480 5.8346
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I.

y/\/2vx/U

y/ v/ 2vx[U

From Rubin and Grossman (1966):

88
8.0
7.2
6.4
56
48
4.0
3.2
24
1.6
08
0.0

p@=a;f@=3a-1a

8.8
80
7.2
6.4
56
4.8
4.0
3.2
24
1.6
08
0.0

068

08

058

08

263
134
0

1.6

230
115
0

1.6

.543
381
195
0

24

500
341
173
0

24

1

808

645

230

3.2

Table 2
Values of u/U

1.0
998 999
966 989 994
905 950 966
781 842, 869
573 629 657
297 329 346
0 .0 0
40 48 56
z[N2vx[U
1.0
10 10
998 10 10
928 992 999
771 874 901
550 645 673
286 341 358
0 0 0
4.0 48 56
2N 2xf0
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1.0

1.0

1.0
996
971
880
670

355

6.4

10
1.0
10
1.0
999
901
673

358

64

1.0
1.0
1.0
10
996
974
885
677

359

7.2

1.0
10
1.0
1.0
1.0
999
901
673
358

7.2

1.0
10
1.0
1.0
1.0
997
975
888
680

361

80

10
10
1.0
1.0
1.0
10
999
901
673

358

8.0

10
1.0
10
1.0
10
10
997
976
.890
682

362

8.8

1.0
10
10
10
1.0
10
1.0
999
901
673

358
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L p (o) =sin (57 @) f(@) = 2 — 3 o3

8.8 1.0
8.0 10 10
7.2 10 10 10
6.4 10 10 10 10
5.6 10 10 10 10 10
48 10 10 10 10 10 10
o 40 998 10 10 10 10 10 10
g 3.2 849 941 984 998 999 999 999 999
= 2.4 566 700 .798 861 .894 901 901 901 901
1.6 277 398 500 579 635 666 673 673 673 673

08 073 .142 206 260 304 336 354 358 .358 358 .358
00 0 0 0 0 0 0 0 0 0 0 0

0.8 16 24 32 4.0 48 56 64 72 80 8.8

z/\/2vx/U

Discussion of Results

The computed values of r, R=1/r, and A,/ 82(x) under Cases 1 and 2 are
given in Table 1, for the various choices of f found in the literature (Schlichting,

1979):

(@) f(a) = sin (—; o)

(b) f@) = >a—-0o

) f(a) = 2a—a?
d f(@ =2a—-2a3 +a*

Table 1 also gives the valuesof I, I, and 8(x)/v/vx/U for the different choices of f.

It is observed that the value of r is very sensitive to the choice of the function
p and, to a lesser extent, to the choice of function f. Under Case 1, p(a) = a,
r ranges from 0.6489 to 0.7863, depending on the. choice of f. Under Case 2, p(«)

= sin (—% ma), T ranges from 0.5265 to 0.6362.
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Reasonably good agreement is obtained between the present results for
3

f(a) = S a- —% o3 and the numerical solution of Rubin and Grossman (1966).

Table 2 reproduces their values of u/U for 0 < y/v/2vx/U < z/\V2vx/U < 8.8,
and also provides the values of u/U taken from the present study for f (a) =
3 1

5 ¢ a3 under both Cases 1 and 2.

Conclusion

The three-dimensional integral-momentum formulation has been shown to
be effective in providing approximate solution to the corner layer problem. The
higher sensitivity of the ratio 6(x)/w(x) to the assumed function p was observed.
The observed moderate sensitivity to the function f is consistent with findings in
two-dimensional analysis. Good agreement was obtained between the u/U values
computed in this study and those of Rubin and Grossman (1966). The positive
results should encourage the application of the integral-momentum formulation
to other three-dimensional boundary layer problems.

Notation
A domain of («, §) in the corner layer
Ax) domain of (y, z) in the corner layer
Ac area of the corner layer

E(1r) area of A
F(r)  integral of f [—r‘ afp@p (ﬁ)}] on A
G(1) integral of {2 [i q {p (®p (B)}] on A

I

H dimensionless velocity gradient, f'(0)

I integral of f (y) [I-f (7)] on 0 <y < 1

I, integral of f (« B) [1-f (@ B)] on0<a<1,0<p<I.
Ip integralof p (@) on 0 <a <1

J

Jacobian determinant, 3 (A, 1)/0(«, B).
complete elliptic integral of the first kind
volumetric rate of crossflow

ratio w(x)/6(x)

c ® O R

free-stream velocity
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f dimensionless velocity function

p dimensionless isovel shape function
q inverse of p

r ratio & (x)/w(x)

S dummy coordinate in the x-direction
u x-component of velocity

w(x) width of corner layer

X,Y,Z spatial coordinates

«, dimensionless coordinates

0% dimensionless coordinate

A7 transformed coordinates

v kinematic viscosity of the fluid

5 (x) thickness of plane layer
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