“What makes the polynomial method less rigid
is the fact that the single unit being adjusted
is the strip that had resulted from model con-
nection of each strip separately.”
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The Concept

Photogrammetry, which is defined as the science of obtaining reliable measure-
ments and other information through the use of photographs, has proved to be a
very effective tool for mapping. One of the most significant developments of
photogrammetry is aerial triangulation, the method and technique by which the
positions of points are determined using a basic network of only a few ground
surveyed points. Statistics show that if all the control points necessary for mapping
are surveyed on the ground, this phase of the work claims a big portion of the cost
of the project. By providing a means of minimizing ground surveys, therefore,
aerial triangulation greatly reduces the costs of photogrammetric surveys. It has
also been shown that by using the method, there is a savings in time as compared to
a full ground survey. The points whose positions are determined usually are the
photo control points needed to give each stereomodel a true scale and a correct
geographic orientation so that any topographic map drawn from the stereomodel,
or any measurement obtained from it for that matter, will be correct.

Aerial triangulation is made possible by the manner in which aerial photo-
graphy is obtained. It is standard practice that the coverage of successive photo-
graphs in a flight strip overlap by about 60% (forward overlap) and that adjoining
flight strips overlap by about 30% (lateral overlap). This can be seen in Figure 1
which shows the photographs of two strips. Two consecutive photographs of a
strip constitute a stereopair. Each stereopair generates a stereomodel as shown in
Figure 2 and the shaded portion of Figure 1. Each stereomodel will require about
four photocontrol points for its correct scaling and orientation.

By the nature of photographic overlaps, stereomodels themselves either with-
in a strip or with adjoining strips have common areas. It is from these common .areas
between stereomodels that the photocontrol points are selected as can be seen also
in Figure 1. Points selected are distinct natural features such as intersections of
road edges, culverts, lot corner monuments, isolated rocks, etc., that are definitely
identifiable in all the stereomodels they occur in. These control points, therefore,
also serve as the link between stereomodels. Before any mapping can be done, the
positions of these points have to be determined either by ground survey methods
or by aerial triangulation.

*Professor, Department of Geodetic Engineering, U.P. College of Engineering.
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Figure 1. Two Strips of Aerial Photography Showing Forward and Lateral Over-
laps. Shaded Portion Constitute a Model.

Methods of Aerial Triangulation

There are three known methods of aerial triangulation, namely the analogue,
semi-analytical, and analytical methods. They differ in the manner in which the
first two phases of aerial triangulation are achieved. These phases are (1) the recrea-
tion of the stereomodels; (2) the model connection; and (3) the adjustment

procedure.

In the analogue method, the recreation of the stereomodel and their connec-
tion are achieved in universal stereoplotters which are so designed and constructed
as to allow continuous connection of models in a strip. All coordinates (X, Y, Z) of
photocontrol points observed in the instruments for a strip are in one machine
coordinate system, and the coordinates are known as strip coordinates rather than
simply model coordinates. In the semi-analytical method, the recreation of stereo-
models is done independently of each other in second order stereoplotters, where
instrumental model connection is not possible. The coordinate system (X, Y, Z)
of each stereomodel is independent of the others. Thus, this method is also more
popularly called the Independent Model Method, the main subject of this paper.
Model connection is achieved mathematically through appropriate formulation.
Besides the fact that universal instruments are now very expensive to produce and
manufacturers have opted to manufacture the less expensive second order plotters,
the rapid development of the electronic computer at present has made this method
more widely used by mapping organizations. In addition, doing part of the work
analytically increases the accuracy of the positions of points.

The analytical method is almost purely numerical. What are observed in
stereocomparators, the instrumentation used, are simply the x, y, photo coordinates
of points. By a more complicated mathematical formulation based on the geometry
of the aerial photographs, these photo coordinates are related to the ground
positions of points. The recreation of the stereomodels and their connections are
done mathematically. Understandably, this method utilizes the computer much more
extensibly. A more advanced hardware is the integration of the stereocomparator
with the electronic computer in the form of what is called the analytical plotter.
This configuration is much more expensive and depends a lot on software support.
Definitely, it produces the most accurate results.
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Figure 2. Stereo Model Generated by a Stereopair.

The Independent Model Method

Recreation of Stereomodels

The recreation of stereomodels in second order stereoplotters is done by a
process called relative orientation. The two photos of a stereopair are introduced in
the instrument and their relative positions with respect to each other as during
photography are exactly recovered. This generates the stereomodel of the ground
covered by the common overlap between the photographs, an exact copy of what
is in nature except at a smaller scale. Once this is accomplished the three model
coordinates (X, Y, Z) of each point referred to three mutually perpendicular co-
ordinate axes integral to the instrument are observed. If the stereoplotter is equip-
ped with a digitizer, these coordinates together with a point identification number
are automatically recorded in magnetic tape or in punched cards. This is done for
all the models in each strip. In Figure 3, we have three such stereomodels with
their independent coordinate systems. Photocontrol points A, B,and C are common
to models 1 and 2 while points D, E, and F are common to models 2 and 3.

Perspective Center Coordinates

If model connection is achieved using only the common model points, such
connection would be weak. A further refinement of the method, therefore,
requires that the model coordinates of the perspective centers (camera lens posi-
tions during photography) 0;, 0,, 0; and 0, in Figure 3 are also obtained. 0,
becomes a common point between models 1 and 2, 0; between models 2 and 3.
Since these points can not be observed in the stereomodel directly, some special
methods to obtain their coordinates are employed. These are the intersection
method or the resection method. With either method, the coordinates (X, Y, Z) of
the two perspective centers of each model are determined in the same system as the

134



photocontrol points. These methods of determining the coordinates of the perspec-
tive centers can be the subject of another paper, and their discussion will be at-
tempted here. Suffice it to say that the coordinates of the perspective centers are
important to achieve stronger and more accurate model connections.

Model Connection for Polynomial Adjustment

Model connection can occur at two different stages of the aerial triangulation
procedure depending on what method of adjustment will be employed. If it is
desired that the polynomial adjustment be used then model connection is done
between the models of each strip to produce strip coordinates of points. This
method of adjustment is simpler and involves less unknown parameters and there-
fore, will need less computer time. Or if the independent model method of adjust-
ment is chosen then the model connections occur simultaneous with the adjust-

ment itself.

The problem of model connection is one of spatial similarity transformation.
It is the objective that all the independent coordinate systems of the models of a
strip be transformed into one common coordinate system, usually that of the first
model. In Figure 3, for example, this will involve the transformation of model 2
into model 1 using the common points 0,, A, B and C,i.e., the quadrilateral
0,'A'B'C 'will be fitted into 0, ABC. The transformation involves seven para-
meters: three rotations, three translations, and a scale change. Once these para-
meters are determined, the other points in model 2 are then transformed. Next,
model 3 is transformed into model 2, which at this point is now in the coordinate
system of model 1, using the common points 03, D, E, F. The rest of the points in
model 3, 04, G, H, I are similarly transformed so that model 3 is now also in the
coordinate system of model 1. The process is continued until the last model of the
strip. The coordinates of all photocontrol points in the strip will now be referred to
one strip coordinate system.

Since for every transformation only two models are involved at a time, we
can generalize by specifying a left model and a right model, the right to be trans-
formed into the system of the left. Let us also assume that the coordinates of n

0, Op —m— Oy O 0y 0s

z, Z 2N,

v "
X, X2 Xs

Figure 3. Three Independent Stereomodels Preparatory to Model Connection.
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common points are X;, Y;, Z; (i=1. . .n) in the left model and x;, y;, z; in the right
model. We require the transformation parameters X, Y, Z, (translations) §2, &«
(rotations) and A (scale change). Basically, we can write, in matrix notation, for

every common point, the equations:

n B o ]

X aj; a3 A4 xi? X

Y; A a1 23 Ay Vi Ys
_Zi_ a3 a3 a33 i i Z ] Lzs_
right scale rotation matrix left translation
model change involving 2, @, k model

coor- coor-

dinates dinates

For n common points, we can write 3n equations involving the seven unknown
parameters. It will require a least squares solution. Also, the equations are non-

linear and will need linearization, estimation of approximate values of unknowns,
and an iterative solution.

A simpler computational algorithm is as follows:

1. Computation of mean coordinates.

2. Computation of reduced coordinates.

XI=X1_XS ?i=Yi—YS Z.=Z.—Z

YiTVi— Vs

>

i~ X X

3. Computation of approximate values.

Q=d=x=0
2 —2 — 2
Narsared
)\=
2 _2 )
[\/Xi ty; ot Zi]

4. Computation of elements of rotation matrix.

ap; cos P cos k
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sin §2 cos k + cost § sin ® sin k
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Computation of rotated coordinates.

AN@pp X3 + ap Y, + a3z
A(ag; X3 + ajy; t+ a537;)

Aaz X3t azy; t aj3z;)

approximate values.

=2 =
[Z;, +Y;

~X Y140 + [X°+4Z).40 —

~[X;Z;] 49 —

dA

2
].dS2 —

[X; Y;1.do —

X.X-X,) + Y,(Y,-Y) + Z:(Z,~Z;)]

[ii Zi].dK +
[?i El] de +

= —_ -2 =2
[YiZ].d® + [X; +Y; l.dk +

- = 2 = 2
+Y, +2Z;]

1

—2
[X;

7. Computation of new approximate values.

=2, +dQ
Q. =P, +dP
Keep = K T dk

Ao SN A +dN)
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8. Repetition of steps 4-7 until corrections reduce to insignificance, i.e., values
of the parameters stabilize.

9. Computation of mean square error of transformation.

V=X =X;" Vy; = Yi-Yi'V, = -7

2 2 2]
[in + Vo F Vzi]
mo =

3n—-7

X, Y, Z; 'are computed using formulas in step 10.

10. Transformation of other points.

X;'= Xs + Nay; X; + 215¥; + 213Z;)
Yi'= Ys + MagX; t a5 + a3zy)
o — — —
Zi' = Zs + N3 X; + a3,y; + a33z;)

Once the model connections of all strips are done, the adjustment follows.
Adjustment Procedures

Adjustment is accomplished for two basic reasons:

1. compensation of the errors in aerial triangulation — in relative orientation of
models and in model connection.

2. determination of the adjusted ground coordinates of the photocontrol points.

Polynomial Adjustment

. The main problem con§idered in this method of adjustment is to find a
suitable “mathematical function” to adjust what is called strip deformation caused

by errors in aerial triangulation. Practice has produced two conclusions regarding
error propagation in a strip, namely:

1. systematic errors cause second order coordinate errors AX, AY, AZ along the
strip; and

2  random errors cause smooth coordinate error curves of unknown order (un-
predictable).

In strips less than twenty (20) models, it was found that the coordinate error
curves due to both systematic and random errors are ‘“‘smooth curves rather close
to a 2nd or a 3rd order curve. The problem, therefore, is to find a polynomial
surface of 2nd or 3rd order that will serve as the interpolation function to deter-
mine corrections to computed Z strip coordinates of points or as direct transforma-
tion equations to solve for the adjusted X, Y ground coordinates. In practice, the
following 2nd order polynomials have been found to be sufficient.
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X =ay+tax—byy+tc;z+ax2 —2byxy + 2c,xz

Y = by tbyx+a;y —d;z+byx? +2a;xy — 2d,xz (A)
AZ = cytcyx+dyyt+ajz+cyx? +2dyxy — 2a,xz
where
X,Y = adjusted horizontal coordinates of points
AZ = correction to the strip elevation

X,y,Zz = computed strip coordinates of a point

ay...d, =unknown parameters
Equations (A) provide for a simultaneous adjustment of the three coordinates.
However, for flat terrain (range in terrain elevations compared to flying height

during photography is not more than 10%), the planimetric and height adjustments
may be done separately. In this case the polynomials used are:

X = ag+a;x —byy+a;x2 —2b,xy
Y
AZ =cy+c;x+cyx? +c3y + cyxy height

by +byx +a;y +byx2 +2a,xy plan  (B)

For every strip, therefore, there will be six unknown parameters for plani-
metric adjustment and five unknown parameters for height adjustment. If the two
adjustments are separate, for the six planimetric parameters three ground control
points are sufficient for a unique solution. One each should be located in the end
models and one in the middle model. More than 3 points will provide better deter-
mination of parameters. See for example Figure 4. For the height adjustment five
control points will be needed to solve the five parameters. Again these should be
distributed in the end and middle models. Each strip will therefore have eleven

parameters.

v e MODELS JI 6 MODELS

FIRST MODEL LAST MODEL

-O—— O— e

A GROUND CONTROL POINT

O OTHER PHOTO CONTROL POINT

Figure 4. A Strip of Stereo Models Showing Ground Control Points and other
Photo Control Points.
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When there are several strips, these should be adjusted simultaneously in order
that the discrepancies in the coordinates of points common to adjoining strips (tie
points) will be minimized. In the adjustment, therefore, the tie points will also be
used. Several strips form a block and the procedure is called block adjustment. The
coordinates of the tie points will also be unknowns.

As an example, we have a block in Figure 5, with the ground control points
and tie points indicated. We assume that the control points have all the coordinates
X, Y, Z. Here we have three strips, twelve control points and sixteen tie points,
with six control points also tie points.

For planimetric adjustment:

A control point i in strip j will provide the observation equations (in matrix
notation):

[l X x2 0 -y —2xy EN [X ]
0 y 2xy 1 X x? Jj a, Y J;

or A'IJ.P]=C1

where A; = coefficient matrix (2x6) computed from the strip co-
ordinates of point i in strip j.
P; = vector of .ransformation parameters to adjust strip j.
G = vector o. given ground coordinates of control point i
X, Y)).

A tie point iin strip j will give equations:

I:l X X 0 -y —2ny . _aOT B {1 0] [x:l _ .
0y 2, 1 x I a, Ol.yi

4

bo

b

LbZ- J
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Figure 5. Three Strips for Polynomial Adjustment
where A; & P; = similar to control point equations
C; =  vector of unknown ground coordinates of the point i.

There will be 36 control point equations and 64 tie point equations to solve for the
18 unknown parameters and 32 unknown tie point ground coordinates, a total of
100 equations involving 50 unknowns. All the observation equations can be
generalized as

A10050) - Usoy = Eaoo,n

For which the normal equations are

ATA <« U = ATE

or N-«U-=F

These normal equations are functions of the two sets of unknowns, the para-
meters P and the tie point ground coordinates C. Thus, the normal equations can

be partitioned into

1
Ny | Ny P Fy
______ I, I— I
I
Nai i N22 C 0
or Nll -P + NT21 «C = Fl (])



Solving for C in equation (2) we get

C = —-N,, 'Ny .P 3)

Substituting (3) in (1) we have
-1.
[Ny; = NT, Ny, Ny 1P ="F,

which are the reduced normal equations involving only the unknown parameters.
The characteristic of these reduced normal equations is that the coefficient matrix
is banded which will require less memory and shorter computation time. The
solution of the reduced normal equations will give the parameters for all the strips.
The adjusted ground coordinates of the tie points and all other points can then be
computed per strip. The mean coordinates of the tie points are then computed
together with absolute and relative discrepancies, and standard deviations.

For height adjustment as stated earlier, the polynomial used is
AZ = Cy+cyx + cyx2 +cyy +cyXy

First, the means of ground coordinates, X, Y, Z and strip coordinates x, y, z of all
control points in a strip are computed. Thus

X. Y. .
Xs=[,] Ys=[,] Zs=[Z,]
n n n
. G=1.....
N ) N A ) n)
n n S n
Then, the reduced coordinates are obtained.
X = X=X, ?i = Y=Y, 2i = Z;-Z
X = X=X Vi = ViYs Z; = -2

These reduced coordinates are used to compute a scale factor for each strip j:

2 2
WX + Y2 +2.2]
W2 + v + 22

The unadjusted elevation of any point i in strip j is therefore

r _
Hij = )\lej
For every control point, the error in elevation is
— ]
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where H; = given elevation.

For every other point i the adjusted elevation in strip j will be
H; = Hij "+ AZij

Thus, the observation equations in the adjustment are as follows: For a control
point i contained in strip j, we have

(Co + Clx + 02x2 + C3y + C4xy)ij = AZU
For a tie point i in strip j, we have
(cp + ¢x + czx2 + C3y + CyXy)j — Azij =0

The corrections AZ,-J- to the unadjusted elevation Hij' of every tie point are also
treated as unknowns.

In the example of Figure 5, assuming that all the ground control points have
given elevations, there will be 18 control point equations and 32 tie point equa-
tions, to solve for the 15 strip parameters and 32 unknown elevation corrections
for the tie points. Again, a least squares solution is needed.

The formation and solution of the normal equations follow the same procedure
as in the planimetric adjustment. Once the adjustment parameters are obtained, the
adjusted elevations of all points can be computed for in each strip. It will still be
necessary to obtain the average adjusted elevations of all tie points. Finally,
absolute discrepancies in control points and relative discrepancies in tie points will
indicate standard deviations of elevations of points.

Because of the fewer parameters that are solved for in the polynomial adjust-
ment method, it is a much simpler procedure and requires less computation time.
However, it can be seen that it is not a very rigid method. A more rigid adjustment
is attained in the Independent Model Adjustment Method.

Independent Model Adjustment

What makes the polynomial method less rigid is the fact that the single unit
being adjusted is the strip that had resulted from model connection of each strip
separately. In the Independent Model Method, the single unit is the individual
models themselves. Here, each stereomodel undergoes a separate spatial similarity
transformation together with the rest of the models in a block. The basic transforma-

tion equations are, considering a point i in model j:

F X i f-x- r-XO-
Y = )\J . R_] . y + YO
L Z J i -Z-J ij \.ZOJ J
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where:

X;,Y;,Z; = ground coordinates of point i.
Xijp¥ijZij = model coordinates of point i in model j.
7\j = scale factor for model j
Rj = rotation matrix of model j in which the three rotations Qj, <I>j,
K; are implicit
Xojs Yojsloj = three translations for model j.

These three equations are non-linear in terms of the four parameters A, &, ¥;,
k:. To solve for these parameters there is need to linearize the observatlon equa-
tions and for the estimation of approximate values. Usually )\ and «; are very large
compared to £2; and ®;, so that one disadvantage of this smultaneous solution for
the seven parameters flor each model in the block is the need for very good ap-
proximate values. With the large number of unknowns, large computer storage and
computer time are required. In practice, therefore, the iterative procedure is sepa-
rated into an alternate planimetric adjustment to obtain the four parameters A, «,
Xo> Y and height adjustment for the remaining three parameters @, ¢ and Zj.

A computational algorithm for the procedure is as follows:

A. Planimetric Adjustment (See Figure 6)

Y .
| f A L ]
= 0
! " "
L :
' [ cle d Os
v v vi
c
a
¢« O— *é‘ _JJO

—X

A GROUND CONTROL POINT O Tir romr . renspecTIvE CRNTER

Figure 6. Block Adjustment of Independent Models.
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Formation of the observation equations.
For control point i in model j

X -y 1 0 [a
y X 0 ] ] b i
Xo
RUE
a = AX.cosk b = A.sink
or
A L] P‘ = C‘

X -y 1 0 . [a ] 1 0 X| _
y X 0 15 b | [o 1 Y,_ 0
X0

-YO-j
or Ay B -1.CG=0

Perspective centers are not included.
All observation equations combined will have the form
A-*U=E
Formation and solution of the normal equations.
Assuming all strip coordinates are of equal weight and not correlated, the
normal equations will be
ATA = U = ATE

or N-U F

which can be partitioned into

N . P+ Nyt .C=F,
Nyy P+N,, .C=0

Eliminating C, the matrix of unknown coordinates of tie points, the
reduced normal equations are

T -
[N;; — Nypo - Ny 7 ™Ny 1 . P = F
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The solution of these normal equations will give P the parameters

X

0j>

By definition A; =

Yoj for all models

/a2 2
a +bj

aj,bj,

3. Transformation of all points (control points, tie points, perspective
centers) in the model using the parameters obtained in step 2.

r_w I 1 [ T
X a —b 0 X X
Y = b a ol . y + Y,
Z | o o j _Z | i 10 §;

B. Height Adjustment

4. Formation of the linearized observation equations.

For height control point i in model j

— — B -1 -
[Yij - Xij 1] .| A2 = [Zi—Zij]
AP
| Zo_J j (Z; = given elevation)

For tie point i in model j

AD
Z, (Z; = unknown elevation)

i

For perspective center p in model j

!‘2 T [~ b [~ T - —
pj o] o A2 Xp —Xp
o —ij o| « |AD - Yp = -Y oi

R R I 8 PR 2% B

Again, when all observation equations are combined together, they will
take the form

A-U-E

146



5. Formation and solution of normal equations.

The normal equations will be

ATA + U = ATE

or N U F

The technique of reduced normal equations is employed in order
to eliminate the unknown elevation coordinates Z; of tie points, and
the unknown coordinates Xp, Yp, Zp of perspective centers.

The solution of the reduced normal equations will then give the
parameters AQj, A<1>j, Zoj for all models.

6. Transformation of all model points.

—_ - - o -

r - r

X' 1 0 +AD X X,
Y| =| 0 1 -0 . |Y + Y,

, -
K el Loy 2] Zo |

7.  Using these transformed coordinates of points a new planimetric, then a
height, adjustment (steps 1-6) is performed until the final values of the
transformed coordinates do not appreciably change. Usually two or
three iterations will be sufficient.

8. Computation of mean coordinates of tie points. Computation of absolute
and relative discrepancies, and standard deviations of coordinates.

It is in the nature of the reduced normal equations that only the unknown
parameters of transformation remain to be solved for so that if m is the number
of models in the block, the number of unknowns for the planimetric adjustment
is 4m, and for the height adjustment, 3m, the solutions for which occur one after
the other. Computation of unknown coordinates of points uses the original normal

equations.

Requirement for Ground Control Points

In the polynomial adjustment, since the polynomials used are of the 2nd or
3rd degree, at least three bands of ground control points, usually at the beginning,
middle and end models of the strips are needed. For the block in Figure 5, there-
fore, 12 ground control points are used to obtain the positions of 32 other photo

control points.

In the independent model adjustment, F. Ackermann of Stuttgart University
conducted theoretical studies of blocks up to 20,000 models from which the very
significant conclusion was made that “blocks with planimetric perimeter control
can be used up to virtually any size.” Such perimeter control will be one every 4
to 6 models along the axes of the strips and one every 2 strips in the perpendicular
direction. He, however, prescribes that height control points be provided inside the
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block. These are shown in Figure 7. Here, we have a block of 8 strips with 16
models each, a total of 128 models that will require 153 photo control points, of
which 16 are horizontal-vertical perimeter control points and 9 additional height
control points in the middle of the block. This means that with 25 ground control
points, the positions of the remaining 128 control points are obtained by the aerial
triangulation.

Accuracy of Aerial Triangulation

Exhaustive studies, and confirmed in practice, show that the independent
model method of aerial triangulation with measurements from precision stereo-
plotters and with' perimeter control has consistently reached the 10 um level at
photo scale. The following table shows the accuracies in planimetry attained in
some projects abroad.

Photo Instr. Number of Standard Error
Scale Models Cont. Unknown Tie of Unit Weight (cm)
Pts. Pts. Pts.
1:6000 C8 32 42 4800 892 4.4
1:4300 Planimat 54 65 3178 1548 4.5
1:10000 C8 33 19 3791 408 8.2
1:7500 A7 170 32 1065 950 5.7
1:14000 A8 129 36 442 366 28.0

(Portion of Table from Ackermann, Ebner & Klein)
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Figure 7. Block of Aerial Photographs Showing Peripheral Locations of Horizon-
tal - Vertical Control Points.
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Research Work in NEC

So far, aerial triangulation has not been used in the Philippines in photogram-
metric projects. All mapping projects have been done with stereomodels provided
with photocontrol points surveyed on the ground. It is significant, therefore, that
a research proposal to investigate the application of the Independent Model
Method of Aerial Triangulation under Philippine Conditions has been approved by
the Committee on Research of the U.P. College of Engineering sponsored by the
National Engineering Center. Measurements will be done in the A8 stereoplotter
of the Training Center for Applied Geodesy and Photogrammetry. The work will
involve a block of six strips with about 70 models. What is significant in the in-
vestigation is that all the models are already provided with photocontrol points
established by the conventional ground method by a local survey company. Using
only the required number for block adjustment, there is the possibility of comparing
positions of the other points by aerial triangulation with those obtained by the
ground method. One problem that the research will have to hurdle is the fact that
the computer programs for independent model adjustment are not yet available
in the country. Part of the work may be the development of simpler but adequate

programs.
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