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Abstract

_ In some applications, there is the nced to compute for the input signals of a
linear system knowing the form of the output signal. This is normally truc in
Physiological and mechanical systems, especially in the ficld of robotics. A simple
way to do this is by discretizing the state cquation. The resulting equations are not
only easy to manipulate but also amenable to computer solutions.
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Level of Reader

Should know basic matrix operation and state variable formulation of linear
dynamic systems.

Introduction

In simulation studies, the output is normally computed given the known
configuration and parameters of the system as well as the inputs. However, there
are problems where we must determine the input, given the model and its output.
Examples of these problems are given below.

1.  Biomechanics — the voluntary, pathological (spasm) or artificial (elec-
trical excitation) input to a muscle can be calculated

from known muscle parameters, joint angle and torque.

2. Robotics — from the known motor properties and the desired
torque or force between two segments of an industrial
manipulator of an electrical or hydraulic activator, the
desired input (current or voltage) signal can be com-
puted.

3. Servomechanism — knowing the desired position or speed of an elevator,

the input signal (current or voltage) needed to control
the elevator could be calculated.

A method that would compute for the inputs of a linear system given its
model and output is discussed.

———
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The Method

Consider the state equation and output equation given below. These two
equations describe a linear continuous system.

X = AXx + Bu (1)
y = Cx + Du (2)
where A = nxn state coefficient matrix

B n X m driving matrix

C P X n  output coefficient matrix

D = px m transfer matrix

X = nxl state variable vector

u m x 1 input vector

y p x 1 output vector

x = d

d_t X

The solution of equation 1 is found to be

X = ¢t)x(0) + sle(t-r)Bu(r)dr 3)
(@]

with ¢(t)! known as the state transition matrix.

The output equation is then equal to
y = Co(t)x(0) + Cfto(t-'r)Bu('r)d'r + Du 4)

Tadej Bajd? uses equation 4, but with D = 0, to compute for the input u(t),
knowing the output and initial condition x(0). This method, although quite effi-
cient, is hard to use since it requires the knowledge of the state transition matrix.>
To circumvent this limitation the discretized form of equations 1 and 2 was used.

Using the definition of the derivative, we get

. 4
x4 - X(t = At) x(t) (5)
At
1¢(t) = eAT

=p-1 [(s1-aA)-! ] with I = identity matrix
2Tadej Bajd, Computing the Input to a Linear Model,
pp 241-243.

3The state transition matrix is quite difficult to evaluate
previously. (Note 1)

“Simulation™, Vol. 40, No. 6, Junc 1983,
as could be seen from the equation given

4Doing this, we are said to be discretizing the state equation 1.

74



l._,ct At = T and t = kT where k = 0, 1, 2., .. substituting cquation S to
equation | will result to

x(kT + T) = (I + TA)x (kT) + TBu (kT) (6)

and for equation 2,

y(kT) Cx(kT) + Du(kT) (7

ha To simplify our notations, welet K== kT, A = 1 +TAand B= TB. hence we
ve

x(K + 1) = Ax(K) + Bu(K) (8)
y(K) =  Cx(K) + Du(K) (9)

The solution of equation 8, a Ist order difference equation is
- 1

K .
x(K) = AKx@0) + Z AK--Tpug) (10)

Therefore, equation 9 becomes
K

-1 :
y(K) = CcAKx0) + §> caK-4-1guiy + Duk) (11)

0

To simplify further our discussion, we let p = m, i.e., the number of inputs is
€qual to the number of outputs, hence D is a square matrix.

Case |, D=0

Expanding equation II gives us the following equations.

y(0) = Cx(0)
y(1) = CAx(0) + CBu(0)
y(2) = cAZx0) + C[ABu(0) + Bu(l)] (12)

yK + D= caK+1x0) + c[ aAKBu(0)
+ AKIBu(l) + ...+ BuK)]
From 12, we could solve for the input variable
w0 = [CB]1 (y(I) - cCAx(0)}
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(CBT! (y(2) — CAZx(0) — CABu(0)}

u(l) =
u(2) - [cB]! (y3 - CA3x(0) — CA?Bu(0)

— CABu(0) (13)
wK) = [(CB1! v+ 1) - cak+ Ix0)

_ caKBu) — caKlBu)
_ ...- CABu(K-1)}

Flow Chart For Case 1
Input A, 8, C.T, 2100
r a.m, ylth, KLim
1
A = 1+ AT
B = T8
@ =[c8)
1
| w0 =¢B [ yh cu(u;]J
L
I
J
——_ﬂ; vk +1) = yik+ 1) - caMHyo0) l
[ =1 J
1
— vk*n=yk+n - ca®ouic-m |

ulk) = [€8] [yIk +1) )

Casell, D+ O
Expanding equation 11 gives the following equations.
y(0) = Cx(0) + Du(0)
y(1) = CAx(0) + CBu(0) + Du(l)
y(2) = CA2x(0) + CABu(0) + CBu(l) + Du(2) (14)

y(K) = CAKx(0) + caK-lpu©0) + caK2pu()
++++ + CBuK-1) + Du(K)
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Solving the input variables from cquation 14

u(0)
u(l)
u(2)

u(K)

= Dy - Cx(0))

= Dl y(l)-CAx(©) CBu))

- pl [y - CAZx(0) - CABu(0) — CBu(l)]
. pl yk) - caKx©@ caRTBu()

. caK2puq1) - ... CBu(K-1)]

Flow Chart for Case 11

Input A, B, C. D, x(0)
T'TLIM. y(t),n,m

1+ AT

-
™

c|m>
=
o]

hje— 1o e

X
o

I,
—
r

viK) = ylK) —CAkx(OIJ
= ‘
NO

r viK) = y(K) —cA'P ulk-11P) J

—

Il

(=]

3

r P =1p+1 J——J
> ulk) =Dl y(K)
] K=K+ *I
Y
NO K> KLIM > Print results
and
Stop
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LISTING OF

PROGRAM ALGOI/BAS: A routine used in computing the input of

a discretized linear system

310
320

380
390
400
410
420
430
440
450
460
470
480
490
5G0
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
6890
690
700
710
720
730
740
750
760
770
780
790

DIM A
READ
DATA
READ
DATA

( Y(2),CB(2,2),U(2),UA(2,100)
A A
8
1
READ C
3
C
3

)

2 (2,2)
1,2),8(2,1),8(2,2)

2

),C(2,1),0(2.2)
DATA
READ
DATA
READ T:
DEF FNYL(K,T
DEF FHY2(K.T
FOR I=1 TO 2
FOR J=1 TO 2
IF I=5 THEN A(1,J)=1.0 + A(I1,J)*T :60T0 170
AC1,0)=A(1,0)*T

B(1,d)=T*B(1,J)

NEXT J

NEXT I

FOR K=0 TO 20

GOSUB 360

IF K=0 THEN 230ELSE 30U

Gosus 710

FOR I=1 TO 2

FOR J=1 TO 2

U(D)=CB(1,d)*Y(J) +U(1])

NEXT J

NEXT |

GOSUB 610:G0T0 310

GOSUB 390

NEXT K

FOR K=0 TO 20

LPRINT FNYI(K,T),FNYZ(K.T).UA(l,K),UA(?.K)
NEXT K

END

Y(1)=FNY1(K+1,T): Y(2)=FNY2(K+1,T)

RETURN

IP=1

IF IP=1 THEN GOSUB 650:G0T0 410ELSE GOSUB 720
GOSUB 620

FOR I=1 TO 2:FOR J=1 TO 2:FOR JJd=1 T0 2
RD(1,3)=RD(1,J)+C(1,JJ)*RT(dJ,J)

NEXT JJ:NEXT J: NEXT I

GOSUB 680

FOR I=1 TO 2:FOR J=1 TO 2°FOR JJj=1 TO 2
RP(l,J)=RP(I,J)*RD(I.JJ)*B(JJ,J)

NEXT JJ:NEXT J:NEXT 1

GOSuUB 710

FOR I=1 TO 2: FOR J=1 TO 2
UCT)=RP(I,0)*UACT,K-1P)+U(1)

NEXT J: NEXT I

Y(1)=Y(1)-U(1):Y(2)=Y(2)-U(2)

IF IP=K THEN 550ELSE IP=1P+] : GOTO 430

GOSUB 710

FOR I=1 TO 2: FOR J=1 T1Q 2
UCD)=U(I)+CB(I,d)*Y(J)

NEXT J:NEXT 1

GOSuUB 610

RETURN

UACT,K)=U(1):UA(2,K)=U(2) :RETURN

FOR I=1 TO 2:FOR J=1 TO 2

RD(I,J)=0

NEXT J: NEXT I: RETURN

FOR I=1 TO 2:FOR J=1 TO ?2

RT(1,d)=A(1,d)

NEXT J: NEXT 1: RETURN

FOR I=1 TO 2:FOR J=1 TOQ 2

RP(1,0)=0

NEXT J: NEXT I: RETURN

U(1)=0:U(2)=0:RETURN

GOSUB 620

FOR 1=1 T0 2:FOR J=1 TO 2:FORJJ=1 To 2
RD(1,d)=RD(I1,J)+RT(1,dJ)*A(JJ,J)

NEXT JJ: NEXT J: NEXT 1I: RETURN

FOR I=1 TO 2:FOR J=1 TO 2

RT(1,J)=RD(1,J)

NEXT J: NEXT I

RETURN

2),CB(2,1),CB(2,2)
1000

i
/2)*(1-EXP(-2*K*T))-6*(1-EXP(-X*T))
(1-EXP(-K*T))-(1-EXP(-2*K*T))
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TABLE I. Listing of the Computed Input

LR R R R R R R R R R R I I

f1(K,T) Y2(K,T) UA(T,K) UA(C,K) K
LR R R R R R R R R R R T T T Y T urararae
0 0 99799 1.00052 0
2.99397€-03 1.00052€-03 .997929 1.0G054 ]
5.97578E-03 2.00206E-03 .994055 1.00143 2
8.94597€-03 3.00849E-03 .990165 1.00232 3
.0119045 4.00782E-03 .986067 1.00346 4
.0148509 5.01227€-03 .982086 1.00441 5
.0177853 6.01769E-03 .978077 L.00548 6
.0207077 7.02417€-03 .974187 1.00637 7
.0236186 8.03155E£-03 .970297 1.00727 8
.0265178 9.03982E-03 .966288 1.00834 9
.029405 .0100492 .962517 1.00905 10
.0322809 .0110592 .958389 1.0103 11
.0351445 .0120705 .954587 1.01114 12
.0379968 .0130827 .950787 1.01197 13
.0408377 .0140957 .946779 1.01304 14
.0436666 .0151097 .942978 1.01388 15
.0464842 .0161246 .939059 1.01489 16
.0492901 .0171405 .935347 1.01566 17
.0520848 .0181572 .931339 1.01673 18
.0548676 .0191749 .927627 1.01751 19
0576393 .0201935 .923917 1.01828 20

R R R R R R R R R R R R R R R R 2R 222222222 RS2 R RRR SRR RRRRRRRRREEE

NOTE: UA(l,t) = Actualinputno. 1=1.0
UA(2,t) = Actualinputno. 2= 1.0
YI1(t) =  Actual output no. 1 = 4.5 { 1-exp(-2t)} -6 {1-exp(-t) }
Y2(t) =  Actual output no. 2 = 3.0 { 1-exp(-t)} — { 1-exp(-2t) }
T =  Sampling period = 0.001

The given example is for case I, D = 0.

Example:
A circuit satisfying Case II is given in Figure 1.

2 ohms 1H

—W- b
— >

_J__+
o0 T CDUz‘t)

Fig. 1. Example for Case II.
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The equations describing the circuit are:

- 1T . C 7T 1
& -3 -1 i 1 0 uy ()
= +
dv
c u,(t)
a—— 1 0 v 0 1 2
] 1 ] 1°1 | | I
B *\ - -1 - A - .
NOIE 0 § 4.5(1-e72t)_3(1-e"t)
yo(t) LO 1 e 3(1-e7Y) - (1-e72Y

The program ALGOI/BAS, the routine used to compute for the given output is

shown. Also Table I, lists the values of the computed inputs for K = 0,1,2,...20.
The actual value of the inputs are ul(t) = ] and uz(t) = 1.

Conclusion

The method discussed does not require computation of the state transition
matrix. Computing for the state transition matrix, especially for large n, is time
consuming. The method is also not limited to cases where D = 0. The limitation of
the method is the need to store the previous values of the input variable in order to
compute for the present considered input variable. However, curve fitting algo-
rithms could be used after several samples of the input variables are obtained.
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