‘“designing a physical model starts with
determining the appropriate scales ’’
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Abstract

Rigid bed physical and mathematical modelling are each discussed at review
level. A brief historical background, an introduction to the theoretical basis for
validity, and some sub-classifications and variants are included. The two techniques
are then compared, and some criteria for selection of method to use are mentioned.
It is suggested that problem definition should govern in the choice of models.
Recent trends that are radically changing the criteria are also mentioned.

Introduction

Models in Engineering Practice

The use of models has become at times indispensable in the planning and
design of water resources projects. Modelling is a broad term that covers mathema-
tical, physical, electrical analogue, and physical analogue simulation systems that
are applicable to Fluid Mechanics, Hydraulic Engineering, Hydrology and even
Water Resources systems planning and design.

' Figure 1.1 shows engineering activities in general. For problems familiar to the
Investigator, some procedures may have been formulated beforehand; methods that
are either analytical, empirical, or semi-empirical and are theoretically sound and
have been proven through extensive experience. The planning and design engineer
uses these methods with confidence even without the use of models.

Many problems, however, do not have straightforward solutions. For these,
we take the detour, as in Figure 1.1, and use models. River models are used in
design of structural measures for flood control and river training such as levees,
revetments, groynes and cut-offs. Planning of non-structural measures such as flood
forecasting and warning systems oftentimes uses river models. In fact, rivers, being
nature’s route for water that is most accessible to man, are often the focus of
attention of water resources projects. Models prove their worth in testing various
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** Research Engineer, National Hydraulic Research Center.
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Figure 1.1

alternatives to arrive at optimal solutions before implementation in the prototype.
Further assurance is also derived from model studies in projects where lives, pro-
perty, or large capital investment on structural measures are at stake.

Types of Models

Only mathematical and physical hydraulic models of rivers are discussed in
this paper. Physical analogue (e.g., Hele-Shaw) models have applicability limited to
groundwater flow studies. In a strict sense, electrical analogue models are mathema-
tical models since its use involves circuit programming done to emulate a selected
set of equations representing laws that govern the flow in the prototype. However,
special equipment (analog and hybrid computers) are required and these are not
readily available in our country.

Two distinct types of physical models are in use, rigid bed and mobile bed.
Theoretical treatment for one type is quite different from the other, and that for
movable bed alone deserves a separate paper. Thus, only fixed bed models are
treated. The discussion on Physical Hydraulic Models describes both distorted and
undistorted models at a review level. Most readers will have had previous exposure
to physical modelling concepts and are referred to papers or whole books for
intensive treatment on hydraulic models in general. CASTRO (1980) gives more
introductory material on the subject.

Mathematical models as applicable on digital computers are then introduced
including a brief discussion on their theoretical basis. Recent publications giving
complete information are also cited. Only one-dimensional models are treated, since
applicability of two-dimensional models has been so far limited to lake, coastal
and esturial problems.

Physical and mathematical models are then compared in termsof tasks involved
and applicability. Trends in their development are presented and the author ad-
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vances some opinions on future developments.

Throughout the paper, examples of model studies that have been done in this
country are cited. The author does not claim completeness, as only those he has
come across in the course of his work are mentioned.

Physical Hydraulic Models
Historical Background

The impetus to use hydraulic models in the study of flow behavior dates back
to Leonardo da Vinci’s statement that it is necessary to conduct experiments to
gain theoretical insight on fluid behavior. Da Vinci himself conducted elementary
tests on some open channel flow situations (SHEN, 1979).

Isaac Newton’s theorems on mechanical similarity formed the basis for model
laws. In 1875, a Frenchman, L.J. Fargue built a river model to demonstrate his
proposed regulation schemes. In 1885, Osborne Reynolds built two models of the
same prototype at different scales to study river regulation and tidal effects
(IVICSICS, 1975).

The first permanent river hydraulics laboratory was founded by Hubert Engels
in Dresden, Germany, where in 1913 he built the first large-scale river model
(KOBUS, 1980).

The hydraulic laboratory of the University of the Philippines was built in
1954. In addition to its academic function, the laboratory was capable of conduc-
ting model investigations. Much of the work involved mainly modelling of hydrau-
lic structures, but under the direction of Prof. A.A. Alejandrino, it built and tested
two models to study the bifurcation at the Agus and Linamon rivers.

Local experience was also gained when the then Bureau of Public Works built
a model of the Pampanga river system to test flood control alternatives.

The National Hydraulic Research Center, since its conversion from the U.P.
Hydraulic Laboratory in 1973, has conducted a number of studies on river training
and control. The Pasig river cut-off study was done in 1974, the Napindan hydrau-
lic control structure was tested in 1977 and the Libuganon river control study was
undertaken in 1980. Tests on the Mangahan Floodway have just recently been
completed this year, and the Allah River model is presently being tested.

Basis of Validity of Models

For proper simulation of a prototype river system, flows in the model should
be “similar” to that in the prototype. It is not enough that the model be geometric-
ally similar (see Figure 2.1), but also dynamically similar (Figure 2.2).

Prototype Model Geometric
Similarity
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Figure 2.1
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Forces on a fluid element

Dynamic Similarity
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Figure 2.2

To achieve a completely similar model, we need to construct it at a scale of 1:1,
which defeats the purpose of modelling. To illustrate, consider the Froude Num-
ber, F=II% which can be regarded as the root of the ratio of inertia force over
g
gravity force, and the Reynolds Number, R= Ul , the ratio of inertia force over
\4

shear force. If we try to satisfy F = Fp and R = Rp simultaneously, we end up
with Vo, = (] m>3/ 2 We have to find large quantities of an uncommon or non-

3 -m

P\l

existent fluid to satisfy the required ratio of kinematic viscosities, or use water but
1

build our model at _l_m = 1.
P

In practice, Froude similarity is considered sufficient for models of open
Channels. Investigators simply ensure that shear and surface tension forces in the
model are negligible in comparison to gravity or pressure forces.

Model Scales

From the requirement of equality of Froude Numbers, the discharge velocity
and time scales follow from the length scale, i.e., that for undistorted models:
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and for models with a vertical distortion,

3/2
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Qm Xm Zn

1/2
Z

U_P - R (2.2)
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where z and x are length quantities in the vertical and horizontal directions, respec-
tively. Equation 2.1 or 2.2 is used to determine model parameters to be used in

test runs for simulating a prototype situation, or to convert measured quantities in
the model to prototype terms.

Although the determination of scales are straight-forward, the decision as to
what length scale to use is influenced by instrument precision and logistical limita-
tions, i.e., availability of funds, space, and facilities. For reasons of economy, the
“smallest™ possible model is adopted, without unduly violating the similarity cri-
teria. Several recent works have been written on hydraulic models in general, e.g.,
KOBUS (1980), IVICSICS (1975), and NOVAK and CABELKA (1981). Each of
these works contains extensive treatment on finding the lower limit of model size.
Distortion of the vertical scale to enable the modelling of a large area is also subject
to limitation. The distortion ratio, n, defined as horizontal scale xp divided by

X
m
the vertical scale Z_ZBhas a maximum value. KNAUSS (1980) puts the upper limit of

m

n as ten percent of the width to depth ratio of the prototype river, or 5.0, which-
ever is less.

Mathematical models
Historical Background

The earliest attempts to mathematically express the behavior of flowing water
were done by P.S. Laplace in 1775-1776 and I.L. Lagrange in 1781. Their studies,
however, did not suffice to describe the flow in natural channels. Nobody did until
1871 when Barre de Saint-Venant presented a paper on the theory of unsteady
flow at the French Academy of Sciences. The original forms of his equations of
continuity and motion as interpreted by YEVIEVICH (1975) are:

oW + awlU) = 0 3.1)
2t as
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where w = cross-sectional area

=  mean velocity

€ = position of water surface above a reference level
XF = friction slope

wpg

s =  length along the rectangular prismatic canal

t = time

Saint-Venant’s work was closely related to some of his contemporaries, notab-
ly H.L. Partiot, J.S. Russell, H. Bazin, and J. Boussinesq with their studies on the
propagation of waves in open channels. Saint-Venant, however, was superior in his
mathematical approach to the formulation of the equations.

In the absence of electronic computers, the equations were, in practice, in-
tegrated only for regular shaped boundaries. The first attempt to use digital com-
puters to simulate natural channels was done in 1952-1953 by Isaacson, et. al. and
applied to portions of the Ohio and Mississippi Rivers. In France, Preissmann,
et. al. developed a model in 1959-1962 that became popular and has since been
applied extensively (CUNGE, 1975). SOGREAH (1973), used the model in the
hydraulic analysis of the Pasig-Marikina-Napindan river system.

One form or another of the Saint-Venant equations endures to this day.
Subsequent work served to generalize their application, but with simplifying as-
sumptions they reduce to the original form. A brief derivation is given and various
modifications that have been used in their application are presented. The
required boundary and initial conditions are also provided and methods of solving
the governing equations are introduced.

Governing Equations of River Flow

There are several ways of arriving at the continuity and momentum equations
from the basic principles of fluid mechanics. Basic textbooks in free-surface flow
give derivations of the equations, e.g., CHOW (1959) and HENDERSON (1966).
Several works have been written with computer simulation as the ultimate objec-
tive.

YEN (1979) takes the mathematically rigorous approach of integrating the
continuity and momentum equations defined at a point. The “point-form” mo-
mentum equations are more generally known as the Navier-Stokes equations. The
first step involves the time averaging of the turbulent fluctuations of velocity.
Next, integration over the depth, or using average velocity through each vertical,
results in the two-dimensional form of the equations. Integration over the cross-
section results in the generally used one-dimensional flow equations.
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CUNGE, et.al. (1980) and LIGGETT (1975) use the control volume appro.a(_:h
which is conceptually easier to comprehend. Immediately, the assumptions origi-
nally made by Saint-Venant are invoked, namely:

a.  The pressure distribution over the vertical remains hydrostatic.

b.  Velocity distribution across the wetted cross-section does not affect sur-
face wave propagation.

c. The water surface across any cross-section is horizontal.

Friction losses from turbulence and boundary resistance do not depart sig-
nificantly from that of steady flow.

e.  The average longitudinal slope, a, of the channel bed is small so that tan
a may be replaced by sin a and cos a may be considered as unity.

For the one-dimensional case, the control volume approach proceeds from the
definition sketch in Figure 3.1.

W) U

(a) - X

\
Lm
F
t
(c)
Figure 3.1

The law of conservation of mass is applied to get the continuity equation, i.e.

(U- U 2xy m-3h 8xy (uy+ 30U  ax, (h 430 Axy _ 9h Ay
ax 2 ox 2 X 2 ox 2 ot

inflow - (outflow) = (change in storage)
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(Strictly, mass flow should be expressed as pU, but since water is incompressible
through the range of events being considered, the density term is cancelled). Sim-
plifying and taking the limit as Ax approaches zero,

(3.3)
oh + 93 (yn) = 0
ot 0X
The law of conservation of momentum can be applied as follows:
2
p [U'h— 2 (U'n) 2% _pU'n+ 2 WU'n 2%
90X 2 90X 2
(momentum influx) — (momentum efflux)
T (p Uh) Ax =ZF Fg + Fe¢ FPl FP2
— (rate of momentum = (gravity + (friction) + (pressure,
accumulation) component hydrostatic)
along x)

Where: ~ Fp, = FE 2 _ 3h?  Ax .y _ (2 4 37 Ax
o FPl P2 _;)_—[(h X 2 )~ +ax 2 )1

Fg = pgh Ax tan a = pgh Ax sina = pgh Ax S

Fr = pghax S¢ 5 Sp = friction slope

Combining terms and simplifying, we get

U 4ydU = gdh - g —Sp (3.4)
ot 0X 0X

Equations 3.3 and 3.4 are the familiar basic forms of the contipuity and
momentum equations. Many variants of the equation are in use, fiependmg on the
physical system to be simulated, the degree of accuracy and precision of results and
available data, and the equipment and other resources available to the modeller.

Simplified Equations

The simplest way of numerically simulating river flow is the sole use of the
continuity equation. This technique is oftentimes called ‘hydrologic routing* or
“storage routing.” Accuracy is limited but sufficient as a first approximation of
river flow. It is seldom used singly but as a part of the the modelling of a larger
hydrologic system, e.g., in water balance studies. Many projects at pre-feasibility
and feasibilty level undertaken locally have used the method, e.g., TAHAL (1978)
on the Pampanga river basin.
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When one form or another of the momentum equation is used in combination
with the continuity equation, a “hydraulic routing” model is developed. The sim-
plest form of the momentum equation is arrived at if we retain only the bed and
friction slope terms, i.e., from Equation 3.4,

So = ¢ (3.5)

which is called the “kinematic wave equation.”” Use of Equation 3.5 with the
continuity equation is called “kinematic flood routing,” and is equivalent to
making use of a rating curve for every section of the model, with flow variations
through each time step defined by the continuity equation. This method may only
be used for systems where Froude Numbers are much less than 1 and backwater
effects are negligible.

The “diffusion wave equation”, evolves from Equation 3.5 through the addi-
tion of the diffusion term, sometimes called the ‘“‘pressure term”:

oh 3.6
Sk = (S, — Sp (3.6)
The inclusion of the slope of the water surface (on the left side of Equation 3.6)
enables the model to simulate the translation of a hydrograph along the stretch of

the channel represented, as well as permits the upstream propagation of backwater
effects.

Two other terms from Equation 3.4 are not included in Equation 3.6. The

term 08U is called the “local acceleration” term as it reflects changes in the
at
velocity at a point through time, while U 3U is called the “convective accelera-
ox

tion” term and expresses the variation of velocities through space. Neglecting the
local acceleration term from Equation 3.4 results in the “quasi-steady dynamic
wave” model. According to YEN (1979), it is preferable to use either the full
dynamic wave model (Equations 3.3 and 3.4) or the diffusion wave model. Neg-
lecting either local or convective terms gives worse results than neglecting both.

Added Sophistications

Lateral inflow is the easiest add-on to implement as it modifies Equations 3.3
and 3.4 only slightly. It is used to reflect actual lateral inflow from banks, and to
approximate the contribution of minor tributaries or losses through percolation.

Flood plain storage is simulated by modifying the application of the con-
tinuity equation alone. However, when the flow through the overbank areas is
considerable, the momentum equation is also applied to flood plain discharge.

Momentum and conveyance correction factors are applied to the momentum
equation to reflect non-uniformity of the velocity across the flow cross-section.
These factors, however, end up modified during the calibration process as model-

lers attribute some inexplainable behavior of the model to the uncertainties in-
volved in the determination of these correction factors.

All of the above sophistications were adopted by ACKERMANN and SHI-
IGAI (1976) where they developed a model that was applied to the Bicol river
system.
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Boundary and Initial Conditions

The application of the full dynamic wave equations to a river reach requires
that the velocity or discharge, and the wetted cross-sectional area or depth of flow,
be defined throughout the reach at time t = 0. Zero discharge or velocity is not
allowed at any point at any time and modellers usually attach provisions for a
minimum discharge. Subcritical flow through the reach requires that, at all points
in time, the velocity or discharge at the upstream boundary and the depth or
wetted cross-sectional area at the downstream boundary be known. Super-critical
flow is an upstream control case, thus requiring that both depth or wetted area and
discharge or velocity at the upstream boundary be a function of time.

Structures, control sections, junctions, and discontinuities (e.g., sudden con-
traction or expansions of channel cross-section that effectively violate the Saint-
Venant assumptions) have to be treated as internal boundary conditions. A model
of a complex river system therefore consists of segments where Equations 3.3 and
3.4 are valid, bounded and/or linked by discontinuities governed and simulated by
special equations. As an example, a junction schematically shown in Figure 3.2
is governed by the following equations:

Figure 3.2

2Q = 0orQ; + Q = Qg
(3.7

h, = hy = h;

Where Q;.Q,, Qg are discharges
h,, hb , hc are total energies at corresponding points.

Methods of Solution

Three main classes of numerical solutions are available to integrate Equations
3.3 and 3.4, namely a) the method of characteristics, b) explicit methods, and c)
implicit methods, in chronological order of their genesis. The methods involve the
discretization of the continuous space and time dimensions of the simulated river
system into finite intervals. The methods are called finite difference techniques also
because the partial differential equations (3.3 and 3.4) are transformed into a set of
algebraic equations expressing discrete changes occurring between the finite space
and time intervals.

The firgt step in using the method of characteristics is to transform the gov-
eming equations into the so-called “characteristic equations.” These equations de-
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fine the propagation of small discontinuities in water surface slope or velocity slope

dh ;pg 3U in Equation 3.4).
90X oX

bt s L

» X

(b)
Figure 3.3

Figure 3.3 diagrammatically shows that the disturbance occurring at any point P
travels along “characteristic curves” downstream (C+) and upstream (C-), and
forward in time (Figure 3.3 (a)) or backward (Figure 3.3 (b)). The shaded regions
define the “domain of influence” of the disturbance, i.e., that outside of the re-
gions the disturbance does not have any effect. Equations 3.3 and 3.4 are each
transformed into a pair of ordinary differential equations which are mathematical-
ly c?agier to handle than the original partial differential cquations. The four charac-
teristic equations are thensolved by finite differences. The method, being the oldest,

is treated extensively in the literature (e.g., ABBOTT, 1975). LIONGSON (1973)
tested it on the Agus River.

. Both explicit and implicit methods use a fixed grid to approximate the phy-
sical system.

e 8% | >
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g- . . . . - . . . 8
(i’ls]'l) (i:j'l) (1+]’J'1)
Initial Time
Figure 3.4

Figure 3.4 shows the x-t plane where computation usually proceeds from an initial
time t = t, and progresses through constant time increments At, while space
increments AX may or may not be constant. We shall now consider the general case
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PHYSICAL MODELS
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MATHEMATICAL MODELS
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or 2 o T
" i i (3.1D
2At

where f-_i is the value of the function, say depth or velocity at point X; and time tj.

1
These equations are derived from truncation of the Taylor series resulting in a first
order approximation (Equations 3.8 and 3.10) or second order (Equations 3.9 and
3.11).

In the explicit method, the equations are arranged so that unknown values are
expressed explicitly in terms of known values and are computed point-by-point, in
contrast with the implicit method where unknown values are implicitly expressed
and simultaneous equations are solved for a group of points, usually all pointsin a
row at time t;. LIGGETT and CUNGE (1975) and CUNGE, et.al. (1980) are
excellent referénces for the derivation of the difference equations and their applica-
tion. BALLOFFET and SAHAGUN (1976) describe an explicit finite difference
model they used for flood studies in the Bicol river system. The model used by
SOGREAH (1973) for the Pasig-Marikina-Napindan river system was an implicit
one,

Physical vs. Mathematical Models
Comparison of Procedures

Figure 4.1 shows the procedure involved in the execution of a model investi-
gation project, presented in a manner that all activities in either physical or mathe-
matical modelling are grouped into analogous steps and then compared.

Designing a physical model starts with determining the appropriate scales.
Besides this, numerous parts of the model and its appurtenant structures have to be
conceptualized and designed. Figure 4.2 shows schematically the typical parts of a
model. Not shown are the various measuring instruments and their mountings, each
of which must be properly selected and located. Although this may seem to b? a
tedious task, an experienced modeller should not find much difficulty in adopting
his methods from one model to another.
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Figure 4.2
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Designing a numerical model entails the selection of the proper forms of the
governing equations with foresight on possible methods of solution, and hindsight
on mastery of the prototype river system. Governing equations for special
boundary conditions shall also be determined at this stage. Next, selection of the
method of solution appropriate to the requirements of the problem to be solved,
be it flood centrol, river regulation, or otherwise. Throughout the design stage, a
targeted host machine or family of computers should be borne in mind.

After a thorough design, the construction of a physical model is quite straight
forward but expensive. Technicians and craftsmen involved view it as the fabrica-
tion of a precision instrument, which a model should really be. On the other hand,
the construction side of mathematical modelling is more aptly termed prototype
schematization. Topographic, hydrographic, and hydrologic information are trans-
lated to discrete numbers and converted to machine readable form. Recent advan-
ces in computer peripheral equipment such as digital tablets, light pens and other
forms of digitizers make this task even easier.

Calibration and verification of both physical and mathematical models are
more of an educated trial and error process. The ease of achieving success depends
on the accuracy of the roughness coefficients assumed in the design stage, as well as
on the degree of tolerance acceptable for the problem, In physical models, calibra-
tion is a tedious task of adding or substracting model roughness elements until the
stage-discharge relationship specified by prototype data is achieved. Interactive
Processing in time-sharing or single-user computer installations facilitates the task
of calibrating a mathematical model. Calibrated coefficients can sometimes lack
physical significance, as in the so-called “black box” models. This may be caused
not only by poor design or schematization, but also by deficient or inaccurate
Prototype data. Nevertheless, black-box models can oftentimes be satisfactory.

Actual test runs of a physical model are expensive in terms of manpower and
energy costs. Runs using 50 to 100 kilowatt pumps for four hours each session are
not uncommon. For this reason, a well planned test program at the design stage
which determines the number of schemes to be tested is called for. Test results are
easy to interpret as the investigator sees and feels the water, aqd a semi-qualitat.ive
approach is possible. On the other hand, numerical modelling is a purely quantita-
tive exercise. After getting the “feel” of the numbers, the number of schemes for
problem solution that can be tested in the model is limited only by the investiga-
tor’s time. LIGGETT, et. al. (1978) applied graphical techniques to a lake water
quality problem. It looks promising that computer graphics can be applied to
reduce the river modeller’s effort at number crunching.

Various audio-visual aids are available to document results of physical model
tests. Aside from the usual report with accompanying figures and photographs,
color slides and video tape may be used. All these are familiar to clients, decision
makers, and other interested parties. A bunch of numbers on computer printouts
are not similarly palatable, and the mathematical model investigator has to extend
his imagination and spend time converting those numbers to comfortable form.
Again, computer graphics, whenever equipment availability permits, should be
used.

Feedback is included in this discussion merely to emphasize that the best way
to improve modelling techniques is to compare model performance with that of
the prototype. The model investigator should welcome criticisms on discrepancies
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observed by others, or solicit prototype performance data, and make site visits occa-
sionally, preferably during important events such as flood or drought.

Comparison of Applicability

Given a problem that requires the use of a river model, the choice as to what
type of model to use is governed by: a) parameters to be extracted from the
model, or what exactly it is we want to study in the model; b) accuracy and
precision required for such parameters; and, ¢) accuracy and precision of available
basic data from the prototype. It is assumed here that facilities are available.and
affordable. The objective of the selection process is to achieve the required results
at the least cost.

A physical model is almost always preferred over mathematical models be-
cause of the confidence elicited by the observers’ being able to see and feel the
water. The larger the size of the model, the more it consumes materials, time, and
energy during construction and test runs. The area of the prototype to be repre-
sented in the model is fixed before-hand by problem definition. There also exists a
minimum depth which has to be maintained in the model, dictated by: a) instru-
ment precision; b) precision of model construction; and, ¢) minimum Reynolds
Number to assure fully turbulent flows throughout the model. The most expensive
option, therefore, is the use of an undistorted model. This type should be used
only where accurate representation of three-dimensional flows are important, e.g.,
in detailed bifurcation studies for natural branching or man-made diversions. Prob-
lems where measurement of velocities play a central role also require this type of
models.

A physical model, however, is inconvenient in applications where unsteady
flow has to be simulated, e.g., in the study of combined effects of flood waves and
tidal fluctuations. The current practice in simulating the passage of a hydrograph is
to discretize it into segments of constant discharge through manageable time pe-
riods, say 15 minutes in the model. This is a very rough and expensive approxima-
tion and we look to mathematical models to provide us with greater precision and
economy. However, state-of-the-art mathematical modelling is still unable to
handle three-dimensional river flows.

When a one-or-two-dimensional model suffices for the given application, we
either use a distorted physical model or a mathematical model. Again, the physical
model is constrained to steady flow situations, while the mathematical model is
deficient in terms of flow visualization. Furthermore, two-dimensional mathemati-
cal modelling for rivers still has to be proven practical. CHANDRASHEKAR, et, al.
(1975) and CODELL (1975) are examples of attempts in its application.

In the gray area where both mathematical and physical models are applicable,
the decision is based not only on economics but also on required accuracy and
precision, identified during problem definition. It should be remembered, however,
that any model cannot be more precise or accurate than the data from which it is
based. For physical models, the practical limits of fabrication should be considered.
For example, masonry work cannot be more precise than + 0.002 meters. Some
instruments may be extremely precise but mounting and calibrating them in-

troduces other types of errors.
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For mathematical models, accuracy is governed by the sophistication of the
model, and precision by the fineness of the grid representing the physical system.
The simpler the model is, the less resources will be spent in developing and using
the model. It would, therefore, be prudent to choose a level of sophistication
corresponding only to the requirements of the problem. The selected model is then
compared to its counterpart in the preceding paragraph.

Concluding Remarks

After some decision parameters for the selection of the model have been
enumerated, it can be seen that problem definition, more than anything else,
decides the level of expenditure for the project. For example, if we review a given
problem and decide that localized concentration of velocities, evaluated through
empirical relationships, would suffice for our design of protection works, then we
can opt for a one-or two-dimensional model and greatly reduce the final cost.

A pragmatic approach to selecting methods may be taken in the following
manner. For modelling of large areas or lengthy river systems, the mathematical
model holds the advantage. Critical areas are identified and the need for a three-
dimensional model is decided for each locale. The combined use of multiple models
should, in most cases, be a viable alternative. The results of one can be the input to

another for a truly interacting system.

The factors influencing decisions are also changing. AMOROCHO, et.al.
(1980) describe a physical model they built that was automatically controlled by a
computer to permit the simulation of unsteady flow, including tidal action. If
applicable here, then this technique eliminates the current disadvantage of physical
models with regard to unsteady flow representation. If we are allowed our wildest
dreams, the paper also underscores the possibility of automatic inter-action be-
tween two or more models of whatever type.

Two-dimensional mathematical modelling of lakes, estuaries, and coastal areas
are common and three-dimensional cases have been tried. Modelling of rivers
beyond one dimension has been previously constrained by computer capacity and
cost. With the advent of very high-speed mainframe computers and multi-megabyte
microcomputers, with better ones still to come, this drawback is steadily being
erased. We should see the wide-spread use of two-dimensional mathematical models
in the near future with three-dimensional models close at its heels.

Better hardware are sure to come as market for them are assured by the
general usage of digital computers. As in other disciplines utilizing these machines,
software development is lagging way behind. The author hopes that this paper
generates discussion, sharing of experiences, and more activity on mathematical
modelling in the local setting.
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