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Abstract

The statistical properties of the largest or maximum observation in a series of
annual extreme events are described and utilized in order to develop a statistical
method for deriving flood envelope curves. The statistical flood envelope method
allows for the upward trend of the envelopes due to increasing record length, for
regionalization and maximization of statistical parameters, and for transposition of
exceptionally high observation. The study aims to reconcile and unify the flood
envelope method with the flood frequency method; as a result, both methods are
governed by the same limitations. Finally, statistical flood envelope curves for the
Philippines are derived based upon the concepts and approaches developed.

Aims

The aims of this paper are (a) to describe the statistical properties of the
largest or maximum observation in a record of annual extreme events for a given
length of record and an underlying probability distribution of annual extremes; (b)
to apply these statistical concepts to the problem of constructing flood envelope
curves in the attempt to reconcile and unify the two flood estimation methods
which, heretofore, are recognized as distinct and separate, namely, flood envelop-
ment and flood frequency methods; and (c) to demonstrate the feasibility of
deriving flood envelope curves for the Philippines or for some of its regions, based
upon the statistical properties of the record maxima of annual extreme floods
which, in this exploratory study, are conveniently assigned an initial underlying
Extreme-Value type I or Gumbel distribution.

Flood Estimation Methods

The design of dams, spillways, and other flood-control structures and develop-
ments (levees, floodways, detention basins, etc.) depends critically on the
magnitude of the design flood that is both anticipated and estimated. Where failure
of the structure would cause loss of human life or extensive economic losses, the
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probable maximum flood (PMF) is adopted (Snyder, 1964; Koelzer and Bitoun,
1964; Riedel, 1977). Where failure of the structure would result in minor economic
losses and inconvenience, a design flood of lower magnitude and with an assigned
frequency (recurrence interval or return period) is selected on the basis primarily of

economic costs/risks and benefits (Ogrosky, 1964).

Four (4) principal methods of flood estimation have been used and
recognized (Riedel, 1977; Johnson, et. al., 1982; Brown, 1982):

(@) Hydrometeorological Methods

These are methods that adopt a design storm, apply losses to produce
rainfall excess, and transform rainfall excess into a flood hydrograph (by
application of the unit hydrograph and/or hydrologic/hydraulic routing
procedures). Modern sophisticated techniques under this method include the
digital-computer catchment models.

(b) Empirical Formulas

These are methods that calculate a design flood peak discharge from an
empirical formula relating peak discharge to measurable topographic or
topographic/climatic characteristics of the catchment. This classification
includes the Rational Formula.

(c) Envelope Curves

The design flood peak discharge is selected from the envelope curve of a
plot of peak discharge against catchment area for recorded floods in a defined

region.

(d) Flood Frequency Methods

These are methods that are based upon statistical analysis of available
flood records to produce a design flood peak discharge of specified return
period.

The two most dominant methods of flood estimation are the
hydrometeorological and flood frequency methods. The hydrometeorological
method, in the case of PMF determination, suffers however from the criticism that
it is difficult to assign and justify an upper physical limit to rainfall, the probable
maximum precipitation (PMP). (Gupta, 1972; WMO, 1973; Fahlbusch, 1979;
Brown, 1982). The flood frequency methods, on the other hand, are subject to
Statistical unreliability in flood estimates associated with high return periods which
exceed the lengths of record, or even with low return periods where records are
short (Myers, 1967; Riedel, 1982).

For the estimation of design floods with assigned frequencies, maximum use
of hydrologic information and higher reliability of estimates may be achieved by
applying both hydrometeorological and flood frequency methods. In the
hydrometeorological method, design storms with assigned frequencies are derived
after statistical analysis of available short-duration rainfall data, space redistribu-
tion (isohyetal mapping, transposition, area reduction), and time redistribution
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(critical temporal pattern). The rainfall excesses obtained after subtraction of losses
are converted to flood hydrographs using empirical or synthetic unit hydrographs
and/or hydrologic/hydraulic routing procedures. In the flood frequency methods,
available annual or partial-duration flood discharge data are statistically analyzed;
the statistical parameters are regionalized, if necessary, for greater reliability; and
peak flood discharges with assigned return periods are obtained from the .ﬁtted
probability distributions. This dual process takes advantage of the utilization of
both the usually longer rainfall records and the actually measured though shorter
flood records. A pitfall to guard against is the tacit acceptance of the equivalence
between rainfall return period and flood-discharge return period, without judicious

consideration of the variable watershed conditions that transform rains to floods.
(Davis,et. al. 1974)

The empirical formulas and the flood envelope curves, though still in use, have
now largely been abandoned for important structures. The envelope curve method,

together with the empirical formulas, has the following disadvantages (Brown,
1982):

(@) ‘““Very often the records available are short and thus do not include the really
exceptional floods that occur infrequently.”

(b) “No allowance is made for variation in catchment shape, topography, soil

cover, vegetation, etc.-all factors which influence the magnitude of flood
discharges.”

One modest aim of this paper is to reconcile the envelope curve method with
the flood frequency method. Whatever limitations and criticisms apply to the
latter, would therefore also apply to the former once the two methods are recon-
ciled. In any case, it is also another goal of the statistical reformulation of the

envelope curve method to provide means by which to overcome the disadvantages
stated above.

Flood Envelope Curves

An early form of the envelope curve was the Modified Myer’s Formula,
developed by Jarvis (1926) for sections of the United States:

Q = C/A (la)
or ¢q = C/NA

where Q = the flood discharge in cfs
q = Q/A = the unit discharge in cfs per sq. mi.
A = the drainage area in sq. mi.
C = 100 (minimum) to 10,000 (maximum)

(1b)

An envelope curve (q versus A) based on eqn (1b) when plotted to logarithmic
scale exhibits a constant slope of -0.5.
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In consideration of the property that envelope curves (q versus A) ‘should be

flatter that the average for the smaller areas and steeper for the larger areas when
plotted to logarithmic scale,” Creager, et.al. (1946) proposed the now well-known
Creager’s Formula for coverage of both U.S. and foreign river flood data:

or

Q = 46 C A(0.894470-048 (2a)

q = 46 C A(0.894470:048.1) (2b)

with the same units as in eqns (la) and (Ib) and where C, the Creager’s constant,
varies from 30 to 200.

The WMO (1967) developed envelope curves for maximum floods in the

monsoon areas of the ECAFE (now ESCAP) Region. Both straight envelopes based
on the Modified Myer’s Formula, and curved envelopes similar to Creager’s
Formula, were derived, with the latter providing a better fit to flood data. The
regional envelope curves obtained are as follows:

(@)

or

(b)

or

or

Sub-region A (Burma, Ceylon, Pakistan, India)

Straight:

Q = 206VA (3a)
q = 206//A

Curved:

q = 5 374(1.4447005.1)

Sub-region B (Cambodia, Mainland China, Indonesia, Laos, Malaysia,
Thailand)

Straight:

Q=97/A (3c)
q=97VA

Curved:

Q= 0.3541-84°00° (3d)
q = 0.35A(1-8470:0%-1)
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(c) Sub-region C (Taiwan, Japan, Korea, Philippines, Vietnam - typhoon
subregion)

Straight:
Q =364/A (3e)
or q = 364//A

Q —g7aA 003 (30

(0051
or q = 87A for A< 24,000 sq. km.

where Q = the flood discharge in cms
q = Q/A = the unit discharge in cms per sq. km.
A = the drainage area in sq. km.

The curved envelopes eqns (3b), (3d), and (3f) are more convenient than
Creager’s Formula, which, when converted to metric units, has the form

-0.048
Q = 1.3C (0.385A)0-935A (2¢)

Both Creager’s Formula and the monsoon region curved envelopes suffer from the

mathematical drawback that the q versus A curve has a positive slope for very small
areas less than the critical area where the slope is zero or flat.

The curved envelope, eqn (3f), that is applicable to the typhoon subregion, is
controlled by the peak flood data of Taiwan, Japan, and Korea. The Philippine
data points utilized by WMO undercut the envelope curve by about 35 percent.

More recently, Crippen (1982) introduced a new convenient form of the

envelope curve equation that he applied to 17 regions in the conterminous United
States:

Q = K; AK2 7K3 (4)

where Z =A0-5 4 5, with Q in cfs and A in sq. mi., and Ky, K2, K3 are regional
constants.

Creager(1939) observed the upward trend of the successive flood envelope
curves for the United States, obtained as of years 1890, 1913 1921, 1934 and
1939, due to “an increasing number of gaging stations and an in’creasing period of
record. Therefore, the occurrence of greater floods as time passes must be according
to the laws of probability and of chance.” The author suggested further research on
“the probability of a storm, of greater magnitude than any that had occurred in
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the past, centering directly over a given drainage area.” After 33 years since 1939,
Gupta (1972) addressed himself to this problem by “estimating the probability of
occurrence of floods in a unit time interval, based on the random characteristics of
storms,” here defined as three-dimensional random vectors composed of two storm
center coordinates and one storm orientation angle.

The present study shall explore the use of the flood frequency method to
explain the upward trend of envelope curves due to increasing length of record.
Flood frequency analysis shall be done despite recommendation to the contrary
made by Creager in 1939, when the inadequacy and pitfalls in the frequency
methods were then just being realized.

Statistics of Extremes

Gumbel (1958) devoted an entire treatise, ‘“Statistics of Extremes,”
exclusively to the theory of extreme events. He introduced the concept of the
characteristic largest value X, defined as

F(xp)=1- 1/n (5)

where F is the cumulative distribution function (CDF) of the random variable X. In
eqn (5), n coincides with our definition of the return period, and S('n is the n-year
event with exceedance probability equal to 1/n.

Assuming independence among n observations derived from a common initial
underlying distribution F, the probability F, that the largest among the n values is
less than or equal to x, is

Fn(xn) = F"(xn) 6)
Eqn (6) defines the cumulative distribution function F,, of the random variable Xo
an order statistic, defined to be the record maximum among n observations
randomly and independently derived from the initial distribution F. Following
Gumbel,the moments of the extremes X, can be defined.

Mean Largest Value or expected record maximum:
- — rl
X, = E Xp)=J_ x d [F* ®] (7)

1
= n-1
fo nxF dF

Variance of X :

, ]
$ = var (X =1 ex)? dF) 8)

Eqns (7) and (-8) give, for n=1, the mean X and variance S2 associated with the
initial distribution F.
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Gumbel presented an interesting constrained variational formulation that
seeks to maximize X subject to fixed mean and variance of the initial distribu-
tion:

maximize ft x dF" — x; x2 dF - A\, x dF

The variational solution is the maximum (or upper bound) of all mean largest
values:

x, = x + -l
VT S =)
In standardized form, the upper bound is
Kn - s — _n-1
s VIRT o0

_ Gumbel computed the moments for the extremes of the exponential dis-
tribution F(x) = l-exp(-x):

n
o= E N (10)

n
g2 — z 1/v2 (11)

in in eqn (10) is asymptotic to In n + v for large n, where v = Euler’s constant =

0.5772 ..., while S‘;Zl in eqn (11) is asymptotic to 72/6 for large n. The properties
of normal, gamma, and log-normal extremes are likewise presented by Gumbel.

Extreme-value Distribution

. The latter part of Gumbel’s book developed the theor of asymptotic dis-
tr1but10n§ m.wh'ich.he derived the three (3) gxtreme valueydistribztigns. These
zta:symptotlc dlstnbut10n§ follow the stability postulate, stating that “the distribu-
l:lon of the largest value in Nn observations will tend to the same distribution of the

rgest value in samples of size n, provided that such an asymptote exists.”

From an initial distribution that js « i i
‘ of the “exponential type,” the first asymp-
totic or the extreme-value type I (EV-I) distribution was derivig: ’ Y

F(y) = exp (exp (7)) (12)

where y = the reduced variate

y = meanof y = v, Euler’s constant = 0.5772. ..

S2 = varance of y = 1r2/6
y
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For purposes of this study, the stability postulate is exploited and EV-I (eqn
(12)) is selected as the initial underlying distribution of a reduced variate y, which
is expressable in terms of the annual extreme flood discharge Q, according to

y = a(Q-b) (13)

where a and b are parameters related to the mean Q and variance S of the annual
extreme flood discharge Q.

The cumulative distribution function and moments of Q are thus

F(Q) = exp[-exp (-a(Qb))] (14)
Q =b + va (15)
S2 = 7n%/6a* (16)

Applying eqn (6) to the initial distribution, eqn (14), gives the distribution
function of the record maximum Qp:

F,(Q,) = exp[n exp(-a(Q, — b)) ]
F,(Q,) = exp[-exp(a(Q, —b) + In n)] (17)

From eqn (17), it is clear, by virtue of the stability postulate, that the record
maximum, Q, also follows an EV-I distribution in which the new reduced variate y

is related to the record maximum Q_ according to

y=a(Qn—b)—1nn

or Q= b+ (y+ In n)/a (18)

Without having to apply eqns (7) and (8), from eqn (18) alone, the mo-
ments of Q, are easily obtained by taking expectations:

Mean Largest Value or expected record maximum Q:

Q, = b+ (y + In n)/a
- b + (y + Inn)/a 19)

= Q + Innfa
Variance of Q:

S2 - Var(y)a? = */6a°
(same as eqn (16))
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Thus, eqn (14) becomes eqn (17) after translation of the mean without change of
variance.

The mean largest value Q_, standardized with respect to the mean and var-
iance of the initial distribution, becomes

K,=% -2 = V6 mnn (20)
S 7r

0.7797 1n n = 1.7953 logjgn

Eqn (20) exhibits the upward logarithmic trend of the mean largest value due

to increasing record length n. The value given by eqn (20) remains below the upper
bound set by eqn (9b).

The return period T, of the mean largest value Qn is obtained by combining
eqns (14) and (19) in the expression

F(Qn) = 1-1/T,
Hence, exp [-exp(- y-In n) ] = 1-1/T

T, = 1
I — [exp(-exp(- y)) 11/™

or Tn=

1
1 — 0.570371/n 1)

As n increases, T, asymptotically decreases to exp(y)n = 1.7810 n. In short, the
return period of the mean n-year record maximum is at least equal to 1.7810 n,

assuming EV-I distribution.
Plotting Position
The familiar Weibull plotting position

FG)= 1 -_J_
n+1 (22)

that assigns the empirical cumulative probability F(j) to the j-th highest observa-
tion in a series of n independednt observations can, in fact, be derived from the

tht?or_y pf extremes by means of a distribution-free argument due to Thomas (1948)'
F(@) is interpreted as the expected value of the cumulative probability F(Q) itself-

Recognizing that the probability dP of F is
dP = Probability that (n4) floods < Q

and (G-1) floods > Q
andone flood = Q +1/2dQ
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then dP = n! FY 1yl gF (23)
(n) ' (G-1)!

Therefore
F() = E(F) =fg) FdP = 1 — |

n+ 1 (REY)
Similarly, the variance of F is obtained:

Var (F) = flo F2 dP - EX(F)

(n-j+1)j
(n+1)2(n+2) (25)

For the record maximum (j=1), the plotting position simplifies to

_ rl n _ n _ |
E(F) fO F dF" = — = 1- — (26)

and the standard deviation of F cquals_l_\/n/(n+2).
n+ 1

Eqn (26) gives a distribution-frec parameter in contrast to Eqns (7) and (8)
which yicld distribution-dependent functions of n. No confusion should arisc bet-
ween the return period T of the expected record maximum [ eqn (21) ] and the
“expected” return period ?n + 1) of the actual record maximum [ eqn. (26) ].

The Statistical Flood Envelope

The probabilistic model that emerges to describe the random variable called
the n-year record maximum Q, is

Q, = Q+5S K, (27)

which is strongly reminiscent of V.T. Chow’s (1951) flood frequency formula and
of Hershfields’s (1961) statistical estimation of probable maximum precipitation

(PMP).

The random deviate K _ is formed as the sum of the mean f(n and the random
number of unit standard deviations M from K, . Substituting in cqn (27) gives

Q =Q+SM+K)=0Q,+SM (28)

Letting CV = S/Q = the coefficient of variation of Q, and assuming EV-I distribu-
tion, so that K, = 1.7953 logn, give

Q, = Q[ + CV(M + 1.7953 logon )] (29)
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The superficial resemblance of eqn (29), for M=0, to Fuller’s (1914) formu-
la:

Qp=QI[l + 08 logioT 1

where Q’I‘ is the T-year flood, is purcly coincidental and does not imply that one
equation supports the validity of the other.

If the initial underlying distribution of the annual ¢xtreme flood is other than
EV-], eqn (29) is replaced by the general formula

Q, = QU1+ CVM +K)] (30)

where Q and CV are statistical parameters derived from single-station or regional
flood frequency analysis; K, is, in principle, a mathematically defined function.of
record length n and may be dependent on the higher moments of the underlying

distributions; and M retains the character of the random number of unit standard
deviations.

To apply the flood frequency formula, cqn (30), to the problem of regional
flood envelopment, the following schemes are proposed:

(a) Regionalization and envelopment of the statistical paramcters Q, CV, and the
higher moments, if necessary. The envelopment procedure is not susceptible
theoretically to the upward trend duc to increasing record length, since the
parameters are stable under the stationarity assumption. Morcover, the stand-
ard errors of parameter estimates favorably decrease with longer records.

(b) Assignment of a maximized value of M based upon the highest cxperie_nce’d
deviation from the expected record maximum. This is similar to Hershfield’s
(1961) approach, except that, in the latter case, the deviation is measured

from a simple mean computed by excluding the record maximum from the
entire sample.

In scheme (a), the spatial density and distribution of the gaging network over
the spectrum of drainage arcas and different topographic, climatic, soil/rock, and
vegetative factors or conditions, may significantly influence the form of the derived
envelope equations for the statistical parameters. For regionalized parameters dev-
eloped by regression with the causative factors (Kite,1977; Yin, 1979) the envelop-
ment procedure may be interpreted as a maximization over all possible join’t,
occurrences of the said factors, implicitly defining a potential set of “maximized
catchment areas. In the light of observed changing watershed conditions, the upward

(or downward) trend of the parameter envelopes is unavoidable since the basic
assumption of stationarity is violated.

In scheme (b), which may be applied with or without scheme (a), the assign-
ment of a maximized M, based upon the highest experienced deviation from the
expected record maximum, is equivalent to the transposition of the highest M to
other stations within the same region defined for the envelope curve. This process
may amount to extrapolation to large flood magnitudes to which the assignment of
return periods becomes highly unreliable.
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Combinations of schemes (a) and (b) may produce estimates that can equal or
even exceed PMF estimates, to which the assignment of return periods becomes

more highly unreliable.

The same limitations of the flood frequency methods are thus inherited by
the statistical flood envelopes.

Application to Philippine Flood Data

The concepts and approaches developed in the previous sections are now
applied to the annual flood data of the Philippines. The NWRC (1980) publication
“Philippine Water Resources Summary Data, vol. 1,” provides the series of annual
peak flood discharges in the streamflow gaging stations of the country, inclusive of
the period 1946-1970. For stations with continuous recorders, reported annual
peaks were instantaneous peaks. For other stations, the reported peaks were based
on maximum daily or hourly staff gage readings. In certain cases, area-slope
methods were used to estimate high flood discharges. The same publication gives a
summary of statistical parameters including the means, standard deviations, and
record maxima of annual flood discharges. The means and standard deviations were

computed by the method of moments:

_ N
Q =_L = Qi (31)
N i=l

N -
s =1L = @i- @i
N1 i=l 32)

The record maxima, here denoted by Q_ , divided by drainage area A, are
plotted against drainage area in a series of charts (Figures 1-6), according .to re-
gional groupings for the Luzon stations, and in aggregates of regions for the Visayas
and Mindanao stations. The maximum controlling points in each chart are con-
nected by broken dashed lines in order to give a rough impressiop of the empiri.cal
envelope shapes. The controlling points are identified by_ the river name, region
number/station number (Rx — xx), and length of record N in years.

The first step of the analysis is the examination of the behavior of the stan-
dardized deviates, K, = max K = (Qp — Q) /S of the record maxima when
plotted against the length of record for all stations. Figures 7-14 exhibit the plots
of K_ against the length of record n. The solid curves on the charts, labelled as E
(maxn K ), represent the standardized deviate of the expected record maximum,
Kn = 1.7953 logjg n, assuming an EV-I distribution. The dashed curves repre-

n
sent I_(n + M for values of M = -2, -1, +1, and +2. The points are grouped

according to regions or aggregates of regions. The points are identified by station
numbers.

There is a discernable upward trend of the random variable K against the
length of record in all regions. The central tendency for the points to group around
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the solid curve is also apparent. For n higher than 10, the scatter of the points from
the mean Kn exceeds M = + 1. The highest experienced M equals 2, as shown in
Fig. 9, for the case of Pefiaranda R, station 39, Region 3. For n much less than 10,
the sampling variation of K is very much suppressed. For the extreme case n = 2,
which is not present in the charts, K, = 1///2 = 0.707, theoretically, a constant.

_ The second step is the envelopment of the statistical parameters Q and CV =
S/Q. Figures 15-17 depict Q/A versus A. A suitable form for the upper and lower
envelopes of Q/A is provided by the monsoon sub-region C curved envelope (eqn.
(3f) ). The envelopes obtained are

upper: QA = 20 AAT%0% —1) (Regions 1-6,8) (33a)
= 10 A&7%05 1y (Region 7) (33b)
= 15 AA70% ) (Regions 9-12) (33¢)
lower: Q/A= AA7%% -1 (Regions 1-6,8) (34a)
= 05 AATC05 (Region 7) (34b)
_ 075 AGTO05 —1)  (Regions 9-12) 340)

The upper cnvelope curves given above cover a wide range of areas, 1 sq.
km. <A<10,000 sq.km., and allow for undercutting of some outliers which lie
above the continuous band of points in the charts.

Figures 18-20 present CV versus A. The coefficients of variation behave very
stably with respect to drainage area, the points being confined within one log cycle.
Although there is a slight apparent downward trend with area, here exhibited by
the envelope:

CcV = 2 A~0.1003 (35)
a constant envelope, given by

CV = 1.335 (36)
is selected in order to preserve the mathematical form of eqn (3f) in the final

statistical envelope curve.

Finally, a series of flood envelope curves for the entire Philippines is derived,
all shown in Figure 21.

Adopting the highest upper envelope for Q/A (eqn (33a)) and the constant
enveloping CV = 1.335, the following “maximized” envelope curve, parameterized
by record length N and number of unit deviates M, is obtained after substitution in

eqn. (29): 0.05
Q. /A =20 [1 + 1.335 (M + 1.7953 log;oN) ] AlA 1) (37a)
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ForM = 0, N = 10, eqn (37a) reduces to

Q /A = 679 AGATO0 1) (370)

Eqn. (37b), as shown in Figure 21, envelopes all regional controlling points
except three higher points — Oco R., Laoag R., and Cagayan R.

For M = 0, N = 25 (corresponding to period 1946-1970), eqn (37a) becomes

Q. /A = 87 AA700% 1) (37¢)

Eqn (37c) is identical to the Monsoon sub-region C envelope, eqn (3f). Thus
the latter can be interpreted as the expected flood envelope curve for generalized
potential ‘““maximized” Philippine catchment areas for the period of record
1946-1970 or N = 25. This envelope curve exceeds all 1946-1970 peak records.

ForM=1,N=25o0orM= 0, N= 90, eqn (37a) simplifies to

Q. /A = 1137 AT -1 (37d)

This envelope curve is higher than the points corresponding to the PMF esti-
mates for the existing major dams of the country (Figure 21), with the exception

of the Magat Dam PMF.
An envelope curve associated with generalized but “unmaximized” catchment
areas can be obtained by adopting middle values of Q/A and CV:

Q/A = 10 A(A70:05 1) (38)

CV = 0.70 39)

Using eqns. (38) and (39) together with N = 25 and the highest observed M =
2, in eqn (29), gives the flood envelope curve for the “unmaximized” case that cuts

through the middle of the regional controlling points in Figure 21:
-0.05

Q. /A = 41.6 AlA -1) (40)

Similar other envelope curves may be obtained for particular regions of the
country by substitution of locally valid relations for Q and CV.

As a parting example, the record maximum floods obtained from the publica-
tion, “Surface Water Supply of the Philippine Islands, 1908-1922” (BPW 1923),
are plotted as Q,/A versus A in Figure 22. It can be seen that the ‘“maximized”

envelope curve (M = 0, N = 10) or eqn. (37b), obtained from the 1946-1970
records provides an acceptable envclope for the pre-war controlling points (with N
less than 10), with the single exception of one outlier, Agno Chico R. (N = 5),

whose M value is presumably in the order of two or more.
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Conclusions and Recommendations

It can be observed that the statistical envelope curves were constructed not by

the simple selection and connection of controlling points but rather by the applica-
tion of systematic steps which we recapitulate here:

(a) Examination of highest observed M from Kn versus n charts (Figures 7-14).

(b) Envelopment of Q and CV (Figures 15-20).

(c)

This particular step may be extended to take into account all the rele-
vant causative factors which jointly produce maximized Q and CV. This pro-
cedure may easily be imbedded in the parameter regionalization of most
regional frequency analyses (Kite 1977).

Substitution of highest observed M and record length N.

The dependence on N accounts for the temporal upward trend of en-
velope curves. Transposition of highest observed M and extrapolation of N
beyond the length of record offer the advantage of predicting higher future

flood discharges, but raise problems of uncertainty in the return periods to be
assigned.

Steps (b) and (c) constitute the means by which to overcome the disadvan-

tages cited by Brown (1982).

Further studies in the light of the results of this preliminary study should

include:

(a)

(b)

(c)

Extension of the method to other initial underlying distributions (log-normal,

Pearson III, log-Pearson III) which are generally applicable to annual flood
data.

Refinement and extension of the method for the envelopment of statistical

parameters, to take into account all relevant causative factors that affect
floods.

Application of the statistical method to the problem of envelopment of an-
nual extreme 24-hr. or shorter-duration rainfall data, which have been treated

to follow the EV-I distribution (PAGASA, 1981) and which have the advan-
tage of longer records than flood data.
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n = Length of Record

Standardized deviates of record maxima of annual extreme floods

Figure 8

( Reglon 2))

plotted against length of record
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