“the fastest method of solving these dif -
ferential waterhammer equations is by digital
computer.”
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Abstract

The safe design of a pumping system requires a knowledge of the maximum
pump or motor speed, the minimum and maximum pressures that may occur in the
system during transient conditions specifically after power failure. Knowledge of
the time at which the minimum head, maximum head, zero flow, zero pump speed
and the maximum reverse flow occurs at the pump can be helpful for the proper
design of discharge valve closure time and other waterhammer protection devices.
This paper presents the theoretical background of the waterhammer equations and
the different methods of solutions to this unsteady flow phenomena that occur in
pipelines. It provides the head and discharge at any time after power failure of a
specific point along the pipeline for given initial and boundary conditions.

Introduction

In a water supply system where the source of water is groundwater, a pump is
needed to lift water to the desired head for storage and distribution purposes. The
safe design of a pumping system requires a knowledge of the maximum pump or
motor speed, the minimum and maximum pressures that may occur in the system
during transient conditions specifically after power failure. Knowledge of the time
at which the minimum head, maximum head, zero flow, zero pump speed and the
maximum reverse flow occurs at the pump can be helpful for the proper design of
discharge valve closure time and other waterhammer protection devices.

This paper presents the theoretical background of the waterhammer equations
and the different methods of solutions to this unsteady flow phenomena that occur
in pipelines. It provides the head and discharge at any time after power failure of a
specific point along the pipeline for given initial and boundary conditions.

* Presented during the Symposium on Water Resources Research in the ‘80s, June 20-22, 1983, Quezon City.
Reprinted with permission.

** Consultant, Planning Management and Development Systems, Inc.

185



Transient Conditions at Pump and Discharge Line

Waterhammer in pipelines is defined as the change in pressures above or below
normal working pressures caused by changes in velocity of flow. These transient
pressure and flow conditions, usually accompanied by a hammering-type noise, arc
usually severe and the pipeline should be designed to withstand positive and nega-
tive pressures caused by this rapid dececleration of the pump motors. Figure 1
shows the time history of the pressure, flow and speed changes at a pump instal-
lation produced by power failure at the pump motors .

When the power supply to the pump motor is suddenly cut off, the only
energy that is left to drive the pump in the forward direction is the kinetic energy
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Figure 1. Transient conditions following power failure

of the rotating elements of the motor and pump and the entrained water in the
pump. Since this pump inertia is usually small compared to that of the liquid in the
discharge line, the reduction in speed is quite rapid. Because the flow and the
pumping head at the pump are reduced, negative pressure waves propagate down-
stream in the discharge line. These subnormal pressure waves move rapidly up the
discharge line to the discharge outlet, where a wave reflection occurs. Soon the
speed of the pump is reduced to a point where no water can be delivered against
the existing head. If there is no control valve present at the pump, the flow through
the pump reverses, although the pump may still be rotating in the forward direct-
ion. In this condition, the pump is said to be operating in the zone of energy
dissipation. Because of the reverse flow, the pump slows down rapidly, stops
momentarily, and then reverses, i.e., the pump is now operating as a turbine. The
pump speed increases in the reverse direction until it reaches the run away speed.
With the increase in the reverse speed, the reverse flow through the pump is
reduced due to choking effect, and positive and negative pressure waves are pro-
duced in the discharge and suction lines respectively.

If the pipeline profile is such that the transient-state hydraulic grade line falls
below the pipeline at any point, vacuum pressure may occur, and the water column
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in the pipeline may separatc at that point. Excessive pressure will be produced
when the two columns later rejoin.

Basic Equations for Waterhammer A nalysis

In order to determine the transient hydraulic conditions at the pump and
discharge line subsequent to a power failure at the pump motors, three effects must
be considered; namely, the waterhammer wave equation, the pump and motor
inertia and the pump characteristics.

I. Waterhammer wave equation

Chaudhry, Wylie and Watters discuss a detailed theoretical derivation
of the basic differential equations for transient flow which are the dynamic

cquation
8H , Vav 123V  OVIVI - g
X g 0X g ot 2gD

and the continuity equation
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In these wquations, x is measured from an upstream origin and v is assumed
positive if the flow is in the direction of increasing x. See Figure 2.1.

\ HeL

Figure 2.1 Definition Sketch for the Different Parameters used in Waterhammer
Equations.
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The velocity of propagation of pressure wavesin a pipeline filled with liquid is

1

a = v ( 1 Dc)
— | — + —
g \K Ee
where values of ¢ are as follows;
c = —i—- — u for a pipe anchored at the upper end and without expansion
joints

— 2 . : . i as
c=1-0%¢tra pipe anchored against longitudinal movement throughout

its length
¢ = 1 — u/2 for a pipe with expansion joints
2. Pump and Motor Inertia

When the power to the pump motor is suddenly cut off, the deceleration of
the pump at any instant depends upon the flywheel effect of the rotating parts of
the pump and motor and the instantaneous torque, T, exerted by the pump
impeller. Hence,

T = “WR?dw or T = -WR2 211 dN
g dt g 60 dt

in which WR? is the flywhecl effect of rotating parts of motor, pump and
entrained water in lb-ftz, and w and N are rotational speed, in rad/s and in rpm,
respectively. For a small time interval At = t,—t,, this equation is written
approximately as follows,

2
T, + T, _ 2ITWR“ (N|-N,)
2 60 g At

This equation is written with the ratios @ = N/NR and § = T/TR as follows;
a,—a, = ngTR(Bl + B5)At
IIWR? Np

The decelerating torque at the rated head and pump speed is

Tg = °0 7 HgQg

211 Ngng in which np is the pump efficiency at
rated conditions. Then a; — ay = KiB; 4 B3y a¢
450gy H,Q
where K; = T RVR
2wR2
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3. Pump Characteristics

The discharge, Q, and the pressure head, H, at the boundary must be known
in order to develop the boundary conditions. The discharge of a centrifugal pump
depends upon the rotational speed, N, and the pumping head, H; and the
transient-state speed changes depend upon torque, T, and the combined moment of
inertia of the pump, motor, and the liquid entrained in the pump impeller. Thus,
four variables — namely Q, H, N, and T — have to be specified for the mathematical
representation of a pump. The curves showing the relationships between these
variables are called the pump characteristics.

Data for prototype pump characteristics are obtained from model test results
by using homologous relationships. Two pumps are considered homologous if they
are geometrically similar and the streamflow pattern through them is also similar.
For homologous pumps, the following ratios are valid

H = constant N = constant
N2 Q

These equations may be nondimensionalized by using the quantities for the rated
condition as reference values. Let us define the following dimensionless variables:

v=0QQg, h = HHg ., a = N/Ng B = TITg

Therefore, h/42 = constant and a/V = constant
Since @ becomes zero while analyzing transients for all four zones of
operation, h/ a2 becomes infinite. To avoid this, the parameter h/(a2 +v2 ) instead

of h/ 42 may be used.

The signs of v and a depend upon the zones of operation. In addltl_on to the
need to define a different characteristic curve for each_zpne of 0pgrat10n, alv
becomes infinite for v = 0. To avoid this a new variable 6 may be defined as 6 =
tan’! g and then the characteristic curve may be plot.ted between % and h/(ag. +
Vz). By definition, 6 is always finite, and its value varies between 0° and 360" for

the four zones of operation.
Similar to the pressure-head curve, the torque characteristic curve may be
plotted between /(52 + y2) and 6.

i : istic - for pumps

Using the data presented by Thomas, characteristic - curves
having specific speed (specific speed = NR,‘/QR/ Hp 14y of 25, 147 and
261 SI units (1276, 7600, and 13500 gpm units, respectively) are presented in

Figure 2.2 and in Appendix A.

Methods of Solutions

To make a complete transient analysis on a pump discharge line requires the
simultaneous solution of the pump inertia equation and the pressure wave
equations in conjunction with the equation for the hydraulic losses in the line and a
complete four-quadrant pump characteristic.
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Figure 2.2 Characteristics of pumps of various specific speeds

The dynamic and continuity equations are quasi-linear, hyperbolic, partial
differential equations in terms of two dependent variables, velocity and
hydraulic-grade-line elevation, and two independent variables, distance along the
pipe and time. A closed-form solution of these equations is impossible. However,

by neglecting or linearizing the nonlinear terms, various graphical and analytical
methods have been developed.

1. In the implicit finite-difference method, the partial derivatives are replaced
by finite differences, and the resulting algebraic equations for the whole system are
then solved simultaneously. Depending upon the size of the system, this involves @
simultaneous solution of a large number of nonlinear equations. The analysis by
this method becomes even more complicated in systems having complex boundary
conditions, which must be solved by an iterative technique. One of the iterative
methods of solving nonlinear simultaneous equations is by Newton-Raphson
Method. The method has the advantage that it is unconditionally stable. Therefore,
larger time steps can be used, which results in economizing computer time. How-
ever the time step cannot be increased arbitrarily because it results in smoothing
the pressure peaks.
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2. In the method of characteristics, the partial differential equations are first
converted into ordinary differential equations which are then solved by an explicit
finite-difference technique. Because each boundary condition and each conduit
section are analyzed separately during a time step, this method is particularly
suitable for systems with complex boundary conditions. The disadvantage of this
method is that small time steps must be used to satisfy the Courant condition for
stability. A brief derivation of the characteristic equations is given below.

Rewriting the dynamic and continuity equations in simplified form, we have

-28Q 4 ,A oH L fQIQ _
L =% gA 5% 2ba 0 3.1
L, =a® 3Q , A 98H _
2 ax BA 0 3.2

Let us consider a linear combination of Equations 3.1 and 3.2, i.e.,

L = L +AL,

or [3Q , Aa%3Q\; jea [2H 4 13H), f qqQ = 0 3.3
(at+ ax) v x x| Toa O°

If H= H(x,t) and Q = Q(x,t) are solutions of Equations 3.1 and 3.2, then the total
derivatives may be written as

dQ _ 3Q 4 3Q dx

dt ot ox dt 34
and dH _ 8H , 8H dx

& - ot ax at 3.5

By defining the unknown multiplier A as

1 _dx _,.2
—x_=dt = Aa 36

1 3.7

._t——

a
and by using Eqs. 3.4 and 3.5, Eq. 3.3 can be written as

or A

dt a dt 2DA
if 4 - 4
dt 39
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dt a dt 2DA

if dx _— _a
dt 3.11

Hence, by imposing the relations given by Eqs.3.9 and 3.11, we have converted the
partial differential equations into ordinary differential cquations in the indepen-
dent variable t. In the x-t plane, Eqs. 3.9 and 3.11 represent two straight lines
having slopes + 1 /a. These are called characteristic lincs.

To solve Eqgs. 3.8 through 3.11, a number of finite diffcrence schemes have
been proposed: Streeter and Wylie use a first-order finite-difference technique:
Evangelisti suggests a predictor-corrector method: and Lister cmploys both first
and second order finite-difference scheme. Because the time interval used in solving
these equations for practical problems are usually smull, a first order technique is
sufficiently accurate. However, if the friction losses arc large. then a first-order
approximation may yield unstable results. For such cases, a predictor—corrector
method or a second-order approximation should be used to avoid instability of
the finite-difference scheme. In a second order approximation, an average value of
the friction term computed at points P and A (Figure 3.1) is used for Equation
3.8, and an average value of the friction term computed at points P and B i
used for Equation 3.10. This results in two nonlinear algcbraic equations inQ_ and
H_ which may be solved by the Newton — Raphson Method. In the predictor-cor-
rector scheme, a first-order approximation is used to determine the discharge at the

t 4

ti+Aat

C+ c-

i—| i i+ X
Figure 3.1 Characteristic lines in the x - t plane

+: (Q_ ~¢ 9A ft =
C+: (Q,-Q,) + 3% (1 HA)+ZDA Q,la,l =0
C—:(Q,-Qgy) —gA(H —H)+PBt o la =0
B = | —
P a P B ma? B

end of the time step. This predicted value of the discharge is then used in the cor-
rector part to compute the friction term.
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The fastest method of solving these differential waterhammer equations is by
digital computer. The conduit is divided into a number of intervals and At is set
equal to Ax/a.Chaudhry, Wylie and Watters discuss numerical methods of water-
hammer analysis and they provide computer programs for the solution of this
unsteady flow problem. Fox also tackles hydraulic analysis of unsteady flow in
pipe networks. He gives detailed attention to the methods of dealing with boundary
conditions such as reservoirs, junctions, valves, air vessels and surge tanks as well as

a variety of pumps.

3. A common method of analysis for waterhammer pressures used to be the
graphical method. Friction was assumed to be concentrated at one end of the pipe
or at a few points along the line, and the waterhammer equations were solved
simultaneously with the pump characteristics on a graph of h = H/H, plotted

against v = V/V, for successive time intervals. Parmakian' presentgg brief and
comprehensive discussion on graphical waterhammer analysis. In addition, he pro-
vides waterhammer charts which furnish a convenient method for obtaining the
limiting transient conditions at the pump and discharge @e when no cpntrol valvqs
are present at the pump. See Figure 3.2,Bergeron and Pickford also discuss graphi-

cal methods of solving waterhammer equations.
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Figure 3.2 Waterhammer Charts
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APPENDIX A

PUMP CHARACTERISTIC DATA*

= - .
I e i S -
* tan — — ¢ !—LZ' 7
(Degrees) |« + v “ ¢y « ¢y o«" sy o ¢V o« + v

0 - 0.530 - 0.350 - 1.560 - 1.560 - 1.000 - 0.560

5 - 0.476 - 0.474 - 1.290 - 1.200 - 0.948 - 0.600
10 - 0.392 - 0.180 - 1.035 - 0.895 - 0.892 - 0.60S
15 - 0.291 - 0.062 - 0.795 - 0.600 - 0.820 - 0.580
20 -0.150 0.037 - 0.540 - 0.355 - 0.665 - 0.503
25 - 0.037 0.135 - 0.308 -0.135 - 0.475 - 0.355
30 0.075 0.228 - 0.082 0.060 - 0.275 - 0.160
35 0.200 0.320 +0.122 0.235 - 0.055 +0.070
4 0.315 0.425 0.310 0.380 + 0.200 0.320
45 0.500 0.500 0.500 0.500 0.500 0.500
50 0.655 0.543 0.635 0.580 0.785 0,620
55 0.777 0.588 0.745 0.645 1.035 0.708
60 0.900 0.612 0.860 0.695 1.280 0.825
65 1.007 0.615 0.982 0.755 1.508 0.955
70 1.115 0.600 1.140 0.850 1.730 1.150
15 1.188 0.569 1.365 0.970 1.970 1.413
80 1.235 0.530 1.595 1.115 2.225 1.608
85 1.278 0.479 1.790 1.300 2.485 1.180
90 1.290 0.440 1.960 1.485 2.740 1.960
95 1.287 0.402 2.048 1.518 2.980 2.150
100 1.269 0.373 2.110 1.540 3.195 2.345
105 1.240 0.350 2.158 1.545 3.380 2.525
110 1.201 0.340 2.203 1.960 3.515 2.7110
115 1.162 0.340 2.250 1.592 3.572 2.900
120 1.115 0.350 2.315 1.642 3.570 3.000
125 1.069 0.380 2.390 1.720 1.480 3.010
130 1.025 0.437 2.495 1.900 3.1350 2.925
135 0.992 0.520 2.630 2.090 3.140 2.760
140 0.945 0.605 2.785 2.315 2.875 2.500
145 0.908 0.683 2.905 2.530 2.570 2.245
150 0.875 0.750 3.000 2.650 2.300 1.990
155 0.848 0.802 3.020 2.720 2.065 1.750
160 0.819 0.845 2.975 2.740 1.840 1.518
165 0.788 0.872 2.825 2.685 1.633 1.300
170 0.755 0.883 2.652 2.535 1.4¢0 1.085
175 0.723 0.878 2.442 2.310 1.260 0.870
180 0.690 0.860 2.185 2.090 1.080 0.660
185 0.656 0.823 1.890 1.850 0.920 0.500
190 0.619 0.780 1.525 1.570 0.780 0.505
195 0.583 0.725 1.195 1.250 0.710 0.555
200 0.555 0.660 0.935 0.955 0.670 0.615
205 0.531 0.580 0.695 0.730 0.660 0.630
210 0.510 0.430 0.500 0.530 0.555 0.500
215 0.502 0.397 0.374 0.350 0.410 0.315
220 0.500 0.310 0.277 0.175 0.265 0.100
225 0.505 0.230 0.190 0.000 0.065 - 0.075
230 0.520 0.155 0.114 - 0,160 - 0.140 - 0.315
235 0.539 0.085 0.058 - 0.295 - 0.345 - 0.515
240 0.565 0.018 - 0.015 - 0.425 - 0.550 - 0.715
245 0.593 - 0.052 - 0.110 - 0.550 - 0.745 - 0.880
250 0.615 - 0.123 - 0.220 - 0.670 - 0.960 - 1.030
255 0.634 - 0.220 - 0.334 - 0.820 - 1.200 - 1.225
260 0.640 - 0.318 - 0.440 - 0.992 - 1.480 - 1.450
265 0.638 - 0.490 - 0.550 - 1.213 - 1.810 - 1.860
270 0.630 - 0.680 - 0.670 - 1.500 - 2.200 - 2,200

*These pump characteristic data are based on data presented by Thomas and Donsky.
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NOTATION

SYMBOL DESCRIPTION

Pipe Dimensions and General Symbols

cross-sectional area of pipe

thickness of pipe wall

inside diameter of pipe

modulus of elasticity of pipe wall material
Poison’s ratio for the pipe wall material
length of pipe

distance measured from an upstream origin
time

elevation of pipe above a reference datum
specific weight of water

acceleration due to gravity

Bulk modulus of water

pressure head for steady conditions
pressure head for unsteady conditions

T AT QN =+ X T myg e >
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H/H

o

O<=‘

velocity in pipe for steady conditions

L

flow in pipe for steady conditions
velocity in pipe for unsteady conditions
flow in pipe for unsteady conditions
VIV,

pipe friction factor

8 <0<

velocity of pressure wave

2.  Pump Operation Symbols

N pump speed in rpm
Np rated pump speed
Hp rated pumping head
T instantaneous torque
TR torque at rated head and pump speed
a N/NR
B T/TR
n pump efficiency at rated speed and head
w ) angular velocity of pump and motor shaft
WR flywheel effect of rotating parts of motor, pump
and entrained water
0 tan™] a
v

3. Air Chamber Symbols
C

volume of compressed air in air chamber

c ratio of volume of compressed air in air chamber at
any time to initial volume, ¢ = C/C,

pressure head at air chamber at any time referred
to absolute zero

H*

h* ratio of absolute pressure head at air chamber at

any time to initial pressure head, h* = H*/H,*
p* aV,/(2g H,*) — pipeline characteristic
K coefficient of head loss such that KH,* is the total
head loss for a flow of Q_ into air chamber
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