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Abstract

Kinematic pairs in a spatial mechanism are viewed either as allowing relative
screw motion between links or as constraining the motion of the two chains of
the mechanism connected to the two elements of the pair. Using pair geometry
constraints of the sphere-plane and sphere-groove kinematic pairs, the displace-
ment, velocity and acceleration equations are derived for, R-Sp-R,* R-Sp-P,
P-Sp-P, P-Sp-R and R-Sg-C three-link mechanisms. For known values of the
input variable, other variables are computed in closed form. The analysis pro-
cedures are illustrated using numerical examples.

Introduction

The mechanisms containing higher pairs such as cams, sphere-plane, sphere-
groove, or cylinder-plane provide the designer with the capabilities of designing
machines and mechanisms to satisfy more complex and exact functional require-
ments than feasible with only lower pair mechanisms. These mechanisms in
general are compact and contain fewer links than those with lower pairs.

In recent years, there has been considerable development in the tools for
kinematic analysis of spatial mechanisms containing lower pairs.
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Kinematic analysis of space mechanisms was initiated by the significant
contribution of Dimentbergl. Dimentberg2a3 demonstrated the use of dual
numbers and screw calculus to obtain closed-form displacement relationships of
an RCCC* and other four-, five-, six-, and seven-link spatial mechanisms con-
taining revolute, cylinder, prismatic and helical pairs. Denavit4 derived closed-
form displacement relationships for a spatial RCCC mechanism using dual
Euler angles. Yang5 also derived such relationships for RCCC mechanisms
using dual quaternions.

Vectors were first used by Chace® to derive closed-form displacement
relations of RCCC mechanisms. Wallace and Freudenstein? also used vectors

to obtain closed-form displacement relations of RRSRR and RRP[RR
mechanisms.

Yang8 proposed a general formulation using dual numbers to conduct
displacement analysis of RCRCR spatial five-link mechanisms. Soni and
Pamidi9 extended this application of (3 x 3) matrices with dual elements to
obtain closed-form displacement relations of RCCRR mechanisms.

YuanlO employed screw coordinates to obtain closed-form displacement
relations for RRCCR and other spatial mechanisms.

Jenkins and Crossleyll, Sharma and Torfason!2, Dukkipati and Sonil3
used the method of generated surfaces to conduct analysis of single loop
mechanisms containing revolute, prismatic, cylinder, helical and spheric pairs.
Hertenberg and Denavit!4 contributed iterative techniques to conduct dis-
placement analysis of spatial mechanisms using (4 x 4) matrices containing
revolute, prismatic, cylinder, helical and spheric pairs. Uickerld explored in
further detail the (4 x 4) matrix approach of Hartenberg and Denavit. Soni and
Harrisberger16 contributed an iterative approach for performing kinematic
analysis using (3 x 3) matrices with dual elements. Kohli and Sonil7,18 used
finite screws to conduct displacement analysis of single-loop and two-loop space
mechanisms involving R, P, C, H and S pairs.

Bagcil® used a (3 x 3) screw matrix for displacement analysis of a
mechanism containing two revolute pairs, one cylinder pair and one spheric
pair. Dobrovolski20 used the method of spherical images to analyze space
mechanisms containing revolute and cylinder pairs. Duffy21,22, Duffy and
Habib-Olahi23 used the method of spherical triangles to derive displacement
relations for five and six link mechanisms containing revolute and cylinder
pairs. Keller25 and Gupta26 also analyzed space mechanisms containing

*R: revolute, P: prismatic, C: cylindric, S: spherical, Sp: sphere-plane and Sp: sphere-groove joint.
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revolute, prismatic, cylinder, helical, and spheric pairs. Recently Kohli and
Soni26 and Singh and Kohli27 used the method of pair constraint geometry
and successive screw displacement to conduct analyses of single and multiloop
mechanisms.

Since Revolute (R) and Prismatic (P) pairs are special cases of the cylinder
pair (in prismatic pairs, the rotation is zero; for revolute pairs sliding is zero), we
derive the analysis equation for C-Sp-C and C-Sg-C mechanisms, and then force
rotations or translations at one or more pairs to zero, to obtain the equations
for the above described three-link one degree of freedom mechanisms.

Briefly, the procedure for obtaining the analysis equations is as follows:
Step 1.  Consider the C-Sp-C mechanism and the C-Sg-C mechanism.

Step 2.  Separate the two moving links (Bodies 1 & 2) at the sphere-plane pair
for the C-Sp-C case and at the sphere-groove pair for the C-Sg-C case.

Step 3. Use the screw displacements in vector form to describe the new (jth)
position of the sphere-plane (Sp) or sphere-groove (Sg) pairs from
two sides of the pair.

Step 4. Use the pair geometry constraints on the position of the pair obtained
from two sides.

Step 5. Force the cylindrical (C) joints as revolute (R) or prismatic (P) joints
by setting the sliding or the rotation equal to zero at cylindrical pairs.

The Three-link Mechanism and Associated Vectors

FIGURE |  C-Sp—C  MECHANISM
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Figure 1 shows the initial position of two rigid bodies grounded via cylin-
dric pairs and connected together by a sphere-plane pair. Also shown are the
following vectors and scalar quantities:

u, - unit vector defining the direction of the axis of cylindric pair A.
up - unit vector defining the direction of the axis of cylindric pair B.

P - vector locating the axis of cylindric pair at A in the fixed
coordinate system.

Q - vector locating the axis of cylindric pair at B in the fixed coor-
dinate system.

A - unit vector perpendicular to the plane of the Sp pair embedded in-
body 1.

A' - vector embedded in body 2, congruent with A in the starting
position, as shown in Fig. -

R - vector locating point R, the sphere center in the fixed coordinate
- system.

eA - rotation of link 1 about axis U,
SB - rotation of link 2 about axis ug.

5 - translation of link 1 along axis u,.
B

- translation of link 2 along axis ug.

X FIGURE 2 C-S4-C  MECHANISM

Figure 2 shows the C-Sg-C mechanism with all associated vectors and
scalars. Description of all parameters are the same as for the C-Sp-C mechanism
except for the direction of the vector A, which is now along the direction of

the groove and also the addition of Sg, which is the translation of the sphere
along the direction of A.
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Pair Geometry Constraint Equations

1>

10

R
FIGURE 3 SPHERE-PLANE (Sp) PAIR FIGURE 4 SPHERE - GROOVE (Sq) PAIR

Figures3 and 4 show a sphere-plane (Sp) pair and a sphere-groove (Sg)
pair with the vector R locating R, the sphere center. The vector A, in the Sp
pair is defined as a vector perpendicular to the plane in which the sphere moves.
In the Sg pair, the vector A defines the direction of the groove.

We can now define the vectors R;, A;, Bj and Aj. These new vectors will
define the displaced position and direction of initially coincident point R and
vector A in bodies 1 and 2 respectively after some relative motion between
bodies 1 and 2. The prime notation here is used for new position expressed
from the motion of body 2, whereas the unprimed notations are used for new
positions expressed from the motion of body 1.

The pair geometry constraint equation for the Sp pair is:*

el
— [(R. -R'".) «A'.)=0,n=20,1,2, ... (1)
g ~] ~ ] ~ ]

which expresses that any relative motion between the sphere and the plane
must be perpendicular to the vector Aj (Fig. 1).

The pair geometry constraint equation for the Sg pair is:

d"r. d™r',
R; Ry @
— - T = (A'.S

dt™ de™ acd

.) n = O; 1: 2: . (2)
n J GJ

*Sce Appendix for the derivation from the complete constraint cquation.
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where SG;j is the translation of the sphere along the groove in the direction of
A The constramt equation for the Sg pair expresses that any relative motion
between the sphere and the groove must be along tht groove which is in the
direction of Aj (Fig. 2).

Working Equations

Referring to Fig. 1, let A be a vector in body 1 and A' a momentarily
congruent vector in body 2 in the first position, perpendicular to the plane of
the Sp pair. After some displacement of the mechanism, these vectors, in general,
will separate due to the relative motion of the joint elements. Noting that
both bodies 1 and 2 are connected to ground by C pairs, we use the equations
developed by D. Kohli and A. H. Soni20 for expressing the direction of a vector
embedded in the rigid body and also the displaced position of a point of the
body after a rotation 6 about the cylinder axis and a translation S along the
same axis. Using the prime notation for positions of the vector A' obtained from
the motion of body 2 and the unprimed notation for positions of vector A
(assumed frozen in body 1 in the first position and then moving with body 1)

from the motion of body 1, the displaced directions of the vector A in bodies
1 and 2 are:

A, = 0. - (A - i .
Ay cos 0, [A (A PA)PA] + sin eAj(PA x A) + (A u,)u

~A’CA (3)

A'j = cos 05 (A - (A - updug) + sinij(gB x A) + (A - up)up (4)

Also, the displaced position of the point R in rigid bodies 1 and 2 are given by:

Ry = costy,((R - PF) - ((R-P) - udu,j + sinb, (uy x (R - P))

FUR P ugguy S, P (5)

R'j 7 cosfpyl(R-Q) - ((R - @-ug) up) + sindy (up x (R - Q)

+ - .
(B2 wplug + Sy + Q (6)
Using the identity (A - (A - = . )
the %ectors: y - UpdUpT (uy x A) x U,, introducing
LeR-Q
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and the following notation for any two vectors u, and D,

Uep = (ug x D) x ug, (72)
we can substitute equations (7) and (7a) into equations (5) and
(6) to get
53 =R +usS, + (coseAj - 1)9AK + SLneAj(g x K) (5a)
and
B'j =R+ BBSB + (coseBj -1 QBL + 31nij(9 X E) (6a)

We now take the time-derivatives of equations for R; and 13} and using the
notation of dots above the variables to indicate time derivatives, we obtain

the following equations;

Bj = EAsAj + [coseAj(t:tA x K) - SineAijK]éAj (8)
g'j = EBéBj + [cosij(gB x L) - SinijgBL]éBj (9)
L upSpj - [cos8, s Uyy + sind,(uy x K)Jéij
+ [coseAj (9 X g) - sineAj yAkjéAj (10)
'gi'j = PBéBj - [cosps Upy + sindy. (up x 9161233-
(11)

- si 8
+ [cosij(uB x L) 51nijyBL] Bj

Substituting equation (7a) into equation (4), using equations (5a) and (6a),
and by making the following substitutions:

M,. = - si
Aj T c088y5(uy X K) - sing, Upy
(12)

M, . . - gi
Mp; cosBBJ(gB X E) 31n9BijL

gAj = coseAjgAK + sineAj(gA x K) (13

NBj = cosijgBL + Sinij(BB x L) )
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we can derive the following Working equations:

z}_« L =A+ (cosBBj - 1)1:1BA + smij (‘EB x A) (14)
A"y = rcosby (ug x A) - sinbpUp,sbg; = Vp;0p; (15)
A'y = rcosey,(up x A) - sindpUp,)0p;
- [c0s8,.U + sinb,.(u, x A)jé2
Bj~BA Bj ‘=B © 2/7/°Bj
A'. = V..6.. - W.. b2, (16)
~ ] ~Bj Bj ~Bj Bj
where
YBj = cosij(gB x é) - sinOngBA
and

WBj = cosijgBA + 31nij(g X é)

Bj - R j = BASAj + (coseAj - l)gAK + SIneAj(EA X g)

- EBSBj - (coseBj - l)gBL - sineBJ(gB x E) (17)
Ry = RYy = upSpg * ¥as0%; - UsSs5 ~ Y3083 (18)
R. - R'.=u8., - N..82, + M .0.. - u.8
~]j ~ 3 ~A"Aj ~Aj Aj ~Aj"Aj ~B"Bj

+ N, .82, - M,.6 -

Np5%83 ~ YB3%Bj (19)
Displacement Analysis:

To analyze the displacements of a particular 3-link one-degree-of-freedom
mechanism containing either the Sp or Sg pair, we need only to take working
equation (17), apply the constraints of the particular grounded pairs and then

substitute the results into the following pair geometry constraint equations for
displacements.

For the Sp pair,

(Bj - R'j) + A'5 =0 (20)
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For the Sg pair.
R. - R',) = A'.S.,. (21)
(~J ~ J) ~

Observe that equations (20) and (21) are equations (1) and (2) with n =0.

The cylindrical pairs used in the derivation may be forced to work as
prismatic (P) pairs by letting 6 = 0 or may be forced to work as revolute (R)
pairs by letting S = 0.

The P-Sp-P Case:

For this mechanism, we use 6, = bp = 0 and equations (l4) and

(17) are simplified to

Ry = Ry = upSuy - upSp;

and
A'. = A
~ J -~

Substituting in equation (20), we get

S..) - A=0 (22)

(upSp5 - UpSpy)

which simplifies to the input/output equation

0 (23)
S,. = —— S
Bj Aj
Up . A
The R-Sp-P Case:
BA is the input; SB is the outpui and g = SA = 0. Equations
(14) and (17) with 0p =S, =0 substituted in equation (20) provide,
[-EIBSBj + (COSSAj - 1)9AK + SlnGAj (l_:lA X 15)] M é = 0

After simplification we obtain

[(coseAj - DU, + sineAJ.(ElA x K); - A
SBj = (24)
ug A
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The R-Sp-R Case

We have for this case SA =S 0, and equation (14) and (17)

B
are simplified to obtain,

1}J - I_Qj = (coseAj - 1)I~JAK + SJ‘neAj(':l x I_() - (cosoBj - 1)EIBL

- SInij (EB X I:)

and

A i = é + (coseBJ - I)IL]BA + Slnij (BB X {\)

Substituting the above equations into equation (20); and simplifying the re-
sulting equation, we obtain,

=S5+ A+ (cosbgy - 1)iUpy - A - Sy - Ugy - 2(ug x L) + (ug x A)J
+sin6Bj[(1~leI:) °Ij-§j . (EBxé)]=0 (25)

where §j is the known vector:

§j = (coseAj - DUy + sineAj (u, x K) (26)

Equation (25) can be solved for Og; by using the following identities:

6

, °B o8
1 - tan® — 2 tan —
2 2
cosey = — 5 sinoy = ——— (27)
0
2 B 2 B
1+ tan™ — 1+ tan™ —
2 2

and simplifying the resulting quadratic equation to yield:

5p -b + \[bz - ¢(C - 2a)
tan — ; = 28)
2 J c - 2a (
where: @ =Ug = & -85« Upy - 2(uyp x L) - (up x &)

b= (ugx 1)« A-S; - (upxa)
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The P-Sp-R Case

Here, eA = SB = 0 and we have

- R'. S

i = u, - (coseBj - I)QBL - 51nij(gB X E)

~3 Aj

and

é'j = A+ (cosb

Substituting the equations above into equation (20) and simplifying, we get,

By " l)gBA + SIHGBj(EB X E)

(cosbpy - 1)(Upy - A& - Sp5(uy + Upy) - 2(ug x L) + (up x 4

+ sinpyr(up x L) - A - S, 5uy » (ug x A)] - Spou, - A =0 (29)

Substituting equations (27) in equation (29) and simplifying the resulting
quadratic gives us:

ij -b + \/;)2 - c(e - 2a)
tan — = (30)
2 c - 2a
where this time:
3= -Up « 8- 5y50u » Upy) - 2(ug x 1)+ (up x &)
b= (ugxL)+A-Spu - (upxh)
€= -Sp5up A
The R-Sg-C Case
Only Sp in equation (17) is identically zero, so we get
Bj - g'j = -EBSBj + §j - (Cosij - I)QBL = SlneBL(BB X I:)
where S, is given by equation (26). Also,
é'j = A+ (cosij - Dug + sinGBj (ug x A)
Substituting in equation (21), we have
EBSBj - §j + (cosij - DUg; + sinBBj(gB x L) + A jSGj =0 (31)

Taking the dot product of equation (31) with é'j X up) and upon sim-
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plification, we get

cos@p. IS + (A x up) +U

. + sinG,. (S. - U
Bji!2;3 Upp = (& x ug)J + sinbpy [

<j <BA *
) i ) - 32
Upr * Upal = (ug x L) - Ugy =0 (32)

Again, 0p; can be obtained by substituting equations (27) into

equation (32) to obtain a quadratic whose solutions are:

85  -b j:Jaz + b2 - 2

tan — = (33)
2 c - a

where a =

S; © (Ax up) + Upy - (A x up)

=55 " Upa * Up * Upa

c=-(ug x L)+ Up,

Taking the dot product of equation (31) with (EB X E) and

simplifying, we get

[§j . (EB X E) - (cos®

Bj " 1)9BL . (‘313 x L)

GJ é'j . (9 X L)

sinbp (upg x L) + (up x L)

(34
A'., « (u, x L) )
-~ J ~ ~
Taking the dot product of equation (31) with up and simplifying,
we get

S,. = [S. - - - si - ! .
Velocity and Acceleration Analysis

To obtain the velocity and acceleration relations, we can either a), take the
derivatives with respect to time of the displacement equations or b), use the
higher order constraint equations. For the P-Sp-P case, taking the derivative of
the displacement equation is trivial. But for the other cases, this procedure is
cumbersome. It is therefore more convenient to just use equations (14) to (19)
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in the following constraint equations (36) through (39), which are equations

(1)and (2) withn=1 and n = 2.

For the Sp pair
R. - R'.) + A", + (R, - R'.) + A'. = 0
(~J ~ J) £ J (~J ~ J) ~ ]

and

R, - R'.) « A'. + 2(R. - R'.) « A', + (R, - R'
(Ry - R'3) - &'y (Ry = R'y) - ATy + (R

For the Sg pair,

R. - R'. =A".S$.. + A'.S..
~J ~ ] ~ J°G] ~ J7Gj

and

R, - R! = A'.S_. +2A'. § .. + A'.S_.
~] ~J ~ J Gj ~ J 7Gj ~ J7Gj

The P-Sp-P Case

(36)

(37)

(38)

(39)

Here we can use the time derivatives of the displacement equation to get:

»

Uy A
S,. = S, .
B up * A A
. Uy * A .
S,. = S
Bj . Aj
ug * A
g BA : é .
. = S..
5] ug * A B
The R-Sp-P Case

Equations (18) and (19) become:

(40)

(41)
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R, - R', =M,.0,. - up.5;.
Ry = Ry = Mp5045 = Up®Bj
and
R, - R', = - N,.6%,. + M,.0,, - uS,.
~) o~ ] ~AJ" Aj  ~AjTAj]  -B"Bj
also
'.=A, A=A, =0
~3 <3 ~3 0 <]

Substituting in equations (36) and (37), we get

S SR (42)
. = —————— B84
Bj . Aj
up A
and
N,. « A M,. - A
A B ¥ N B 49
BT a Mo a (
The R-Sp-R Case
SAjESBjESAjESBjESAjESBjEO

Equations (18) and (19) become:

-'=
Bj Bj ~A_] MB_’]BJ
and
ii.-ii'=-N.62.+M.§.+N.éz.-M.'é.
~j ~j ~Aj" Aj ~Aj"Aj ~Bj" Bj ~Bj Bj
Also

' s2

A', A - W82,
A'y = Vpsbpy 5 A j YBJ Bj ~ IBj° Bj

Substituting in equations (36) and (37), we get

. A’

5 ~Aj ~j . (44)
Bj : ®aj
Ypj - A (R - R j) ’ YBj

and
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-N,. - A", . A', 2M
. ~Aj ~3 .9 I.tiAJ ~ j . “Aj
= - 9",. + ———— 98,. +

Aj D Aj

* VB3

No. «A', - 2M,. - - (R, - R',) - W.
By " 23 Mgy + Vpy - (By - B J) ~Bj 52

+ D B
WhereD=E'[Aj ’éj - (l}j -Bj) © Vgj
The P-Sp-R Case
Equations (18) and (19) are
R, - R', =
~3 ~] ~A Aj MBJ Bj
R, - R', = u8,, + Ny.b2,. - M. .00,
557 %5 7 Y%y T UB3% By - ¥B3®j
also
A - 2 ”. - _ .2
A% = Vp;%p; and A', YBJGBJ Wg359 B
Substituting in equations (36) and (37) we get
. YaT 2 )
0,. = S.,.
BJ ' ' A_']
M,. - A'. - (R. - R'". - V..
~Bj ~ ] (~J ~ J) ~Bj
and
. 1. o
0. = — . N
Bj T} [EIASAJ' + 2(uy YBj)SAJeBJ
C A - V.. - _,-R'.)-w)e
+ (NBJ A j zyBJ YBJ (BJ ~ ]

where D is given by equation (46).

The R-Sg-C Case
Only SAj'.éAj and SAJ
o _ o ' - . _ . _ . ° .
Ry - R'y = Mp5055 - upSp; ~ MBjOBj

and

67

(45)

(46)

(47)

(48)

are zero and equations (18) and (19) become:
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. " 2 - .2
. - R', = - + - Sp. + N,.6°,. - M
Ry - R'y = =Ny, 8%, @AJ aj ~ 98°j t U3 Bj -BJ BJ
also,
A'. = Vo.b.. and A', = V_.0n. - W .82 .
~J ~Bj Bj A5 = YB3®s5 - ¥B3® Bj
Substituting the expression for (R - R')) just obtained into equation
(38) we get -
Mas®as ~ U8%3 " MB3®ms T 2'55%5 * Va3%83%; (49

éBj’ SBj and SBj are unknowns in equation (49).

Taking the dot product of equation (49) with (é'j X HB)' we get

Mp30a5 - Ypyfpy) = A7y x up) = Vpy - (875 % up)Op;Se;

or

: Yay * A5 * Up : (50
Bj ~ (Sg5Vps * Mpy) * A’y x ug Aj

Now, taking the dot product of equation (49) with [é'J b (SGJ Bj +

MBj)], we have,
(Mp5605 - UpSpy) * A"y X (SgyVpy +1Mpy) = 0

1
Myg = A"y x (SgyVgy + Mpy)

or $8,. = B,. . (51)
Bj ) ' Aj
ug « A’y x (SgiVps + Mpy)

Again taking the dot product of equation (49) with

Up X S + M

cjvj t Mpj)

e have - A'.S . =
v (My3005 - A" Gj) * Up X (SgyVpy +Mp;) =0

) Mag = v X (Sgzl¥py + Mpy)
or S.H. <= 6, .
GJ ' AJ
A'y v upg x (SgyVpy + My,

(52)
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Acceleration: Substituting the expression for (l}J. - B'j) obtained

earlier for the R-Sg-C case into equation (39), we will get,

52 52 _
Nai® a3t li’AJ Aj ~ EBSB + Nps07p5 - Mp3Ppy
'2 & ' o
- IS, + & .. +A'S
(VBJ Bj ~ ¥Bj° BJ)SGJ ZYBJBBJ Gi  ~ j°Gj
or
.. .. . .2
' = - . +
ugSpy *+ 4505 * (Sgy¥y *+ Mpy)0py = Naghiag * Mastay *
52 8 (53)

(Nps + Sgs¥p;) 0755 - 2Vp59855¢;

Letting X be equal to the right hand side of equation (53) and by using the same
technique of taking the dot product of equation (53) with the proper cross-
products, we will obtain the following,

“ R+ A%y xug (s
6,. = 5
BJ “ ]
(Sg3Vps + Mpy) * A"y x up
X » A', X (S~.Vo. + M,
L (Se3Yp3 * YB3 (s5)
Bj N
ug * A"y x (Sg3Vpy + Mpy)
“ X+ upgx (SGJ Bj + IZIB_-',)
SG. = (56)
J A' *up X (Sg;Vps + My

Numerical Examples

1. Displacement analysis of a R-Sp-R mechanism.

The vectors describing the mechanism are,

- (21 + 15 +0k) 1//3

(=1
|

up
up = (=31 + 2§ + 0k) 1//13
P =0f + 0j + Ok

Q = 01 + 03 + 1k

R = 1.51 + 1.5 + 1.5k

A= 0i+ 0]+ 1k
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Displacement analysis results

N (degrees) 6 (degrees)
40 1.32
80 -8.48
120 -22.88
160 -36.30
200 -45.41
240 -48.06
280 -39.90
320 -17.82
355 -1.29

2. Displacement, velocity and acceleration analysis of a R-Sg-C mechanism.

The mechanism parameters are;

eg
] n

RO
1]

'
1}

>
]

(11 + 23 + 1k) 1//6
(11 + 15 + ok) 1/v2
0i - 05 + Ok
0i + 03 + 1k
31 + 3] + 3k

ai + 13 + 2k) 1//8

The motion parameters are: 9 Aj 1s one unit of angular velocity and 6 Aj is zero,

both constant forj =0, 1, 2. ..

" The results of the analysis for the R-Sg-C mechanism are shown in a table

on the next page.

The direction of the rotations and linear motions are established using the
right hand rule. Rotations are positive counter-clockwise looking at the head of
the unit vectors Up and Up. Linear motions are positive when they are in the
direction of the vectors they are associated with.

It is to be mentioned here also that although the quadratic equations
gave two sets of solutions, only one set will define the motion of the mecha-
nism. The other set of solutions are for those positions in which the mechanism
has to be disassembled into the other possible configuration.
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Conclusions

Displacements, velocities and accelerations have been derived for several
three-link spatial mechanisms containing sphere-plane and sphere-groove pairs.
The groove of the sphere-groove pair was assumed to be a cylindrical groove,
resulting in straight line axis of the groove. However, a more generalized groove
may be one whose axis is a spatial curve. The authors are working on developing
analysis procedures for mechanisms containing such a generalized sphere-groove
pair. The expected results of their work will be subject of a forthcoming paper.
Similarly, the authors also have the generalization of the sphere-plane pair in
progress, in which the parallel planes of the pair are generalized to form equi-
distant curve surfaces.
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Table of displacement, velocities and accelerations.

Op og 0 bp Sc 8¢ Sg Sp S S
40 12.99 .97 .87 -1.22 -1.56 .73 1.26 1.57 -.98
80 -95.87 -3.23 .66 -2.06 -.06 5.28 2.04 .18 -3.90
120 -112.24 .05 .96 -. 64 .53 -.67 1.11 -7 -.36
160 -98.34 .40 .27 .58 .83 -1.02 -.04  -1.29 .29
200 -81.04 42 .03 1.32 1.26 -1.21 -1.06  -1.54 .99
240 -61.47 .29 12 1.55 1.26  -1.56 -1.65  -1.15 1.65
280  -40.35 .16 17 1.37 43 -1.67  -1.65 -.10 1.82
320 -19.17 .18 .29 .86 -.74  -1.48  -1.05 1.09 1.41
355  -2.2 .39 .22 .13 -1.45 -.90 -.15 1.7 .59
Appendix

1. Sphere-plane Constraint Equation

The complete displacement constraint equations of the Sp-pair are:

and

R.

~J

u

Pj

- R',

= S_.u,.
~ 3 Pj Pj

. 1]
A'p;

0

(a)

(b
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where E’Pj is a unit vector in the plane of the Sp pair, perpendicular
to é'j and is in the direction of the relative motion of point R

of body 1 with respect to the initially coincident point R' of

body 2.

Derivatives of equations a) and b) with respect to time are taken to give the
following velocity and acceleration constraint equations:

Velocity: gj - g'j = éPjEPJ + SPJBPJ (c)
and g Py é'j + E'Pj . éj =0 (d)
Acceleration: Ej - é'j = éPjB'Pj _ ZSPJ~ pj * SPJE Pj (e)
and u Pj . é'j + 2u Pj . é'j + 1;1 Pj . :é'j =0 ()

The constraint equations a) to f) are complete in the sense that all of the im-
portant variables in the motion of the joint elements are included. Also, the

Coriolis component in the acceleration constraint equation f) is evident since
A is a function of GBJ

. dn
2. Proof that — (Bj - g'j) . é'j =0 n=20, 1, 2 satisfies
at"

the complete Sp pair constraints equation.

Without loss of generalit =
g y, we can let §P' SPJB Pj and
write the complete constraint equation as:
a" a"
— (R, - R',) = — .
~ Ry - R'y) ~ (5py) a)
dt dt
and
qn
— (Sp. * A'.) =0 b)
~Pj ~
de™ J
Displacement: For n = 0, equation a) and b) are
(B = ) = SPJ C)

and
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S,. * A'. =0
~Pj %]
Taking the dot product of equation c) with é'j gives us the

displacement constraint equation for the Sp pair.

R. - R',) - A'. =0
(“J ‘“J) ~J

Velocity: With n = 1, equations a) and b) will become

R. - R', = &_.
I}J ~ 3 ~Pj
and
S,. « A', = -S_. « A",
<Pj ~ ] ~Pj ~ ]

Taking the dot product of equation f) with é.j gives us

R. - R'.). - A", =§_. « A",
(~J ~ J) ~ ] ~Pj ~ ]

Substituting equation g) into h), we will have

Ry - R';) - 47 = -85, - &

Equation c) can now be substituted in equation i) to get:

R, - R'.) « A", = -(R. - R',) - A",
("J “‘J) ~ ] (BJ ~‘J) ~ ]
or
R. - R'.) « A', + (R. - R',) - A", =0
(‘“J ~J) éJ (‘“J ~ ] ~ ]
d ]
which is really — (R, - R',) = A'.7 =0

a3 -3~

Acceleration: For n = 2, equations a) and b) will be

. - R', = S_.
~]  ~ 3  <~P]
and
“-’ ' 0-' S 'A'.=0
Spj éj+2§Pj Aty + 3p5 ° 23

Taking the dot product of equation 1) with é'j and substituting

d)

e)

£)

g)

h)

i)

3)

k)

1)

m)

73



74 PHILIPPINE ENGINEERING JOURNAL

. .'=- -.A|__S..A|
Spy © A'y = ~28py - ATy - Spy A

from equation m), we will get

R R . ! =.... o'._S -A'.
(R; - R'y) « A'y = -28p5 * &5 7 Zpy " 25
R, - R'.) - A', +28,. « A'. +S_. + A', =0 n)
or (Ry - R'y) » ATy + 28py - ATyt Spy v &

Substituting equations c) and f) into equation n) gives us,

R, - R'.) - A', + 2(R, - R'.) - A", + (R, - R',) + A", =
(~J ~J) ~ ] (~J ~J) ~ ] (~J ~J) éJ 0
which is
d2
— [(R, -R',)) - A'".] =0 o)
~] ~ ] ~ ]
at?
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