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Abstract

Suppose that a sequence of probability distribution functions [F,] con-
verges weakly to a distribution function F. Does the sequence of optimal quan-
tizers for the F,’s converge to an optimal quantizer for F? If so, do the res-
pective distortions converge to the optimal distortion for F? It is shown that
uniform integrability of the cost function with respect to the sequence {F,}is
sufficient to obtain such convergence for mean-square distortion. These ques—
tions are used to motivate a study of the strong consistency properties of opti-
mal quantizer designs based on sampled data.

Introduction

Pulse code modulation (PCM) appears to be the emerging new technology
for long haul voice transmission. Its popularity derives in part from the robust-
ness.of digital transmission methods to noise and distortion, and in part from
the simplicity and flexibility of digital transmission and processing. In PCM, the
analog signal is converted at the transmitter to a digital format in a process
known as analog-to-digital conversion. The process entails the addition of a con-
trolled amount of distortion, or quantizing noise, to the original signal. In
return, noise pick-up in the communication channel can be minimized. This is
a trade-off which is fundamental to the design of PCM communication systems.
Therefore, the analysis of the quantizing process is crucial to a determination of

the overall system performance.
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Quantization is perhaps the simplest and most popular method for analog-
to-digital conversion. Roughly speaking, a quantizer is a device which constructs
a discrete-amplitude approximation of a continuous-valued quantity. As such,
quantization is philosophically akin to the process of rounding-off numbers. In
fact, this viewpoint can be adopted in studying quantizing errors in digital
filters, although this paper will not delve into this topic.

Because of its importance, quantization has been the object of many inves-
tigations. Lloyd [9] and Max [11] independently pionecred the probabilistic
approach to quantizer design which has come to be known as the Lloyd — Max
algorithm. This method takes the assumed probability density of the (random)
input signal and by successive iterations converges on an optimal quantizer de-
sign. The optimality of the result may be limited only to the assumed density.
Subsequent workers experimented with different techniques, such as fixed-point
methods [8, 12], dynamic programming [5] and Newton — Raphson iterations
[13]. Except for reference [8], all of these techniques share the common as-
sumption that the probability distribution of the random inputs is completely
specified. In practice, however, this assumption is rarely met because real sources
do not conform to any standard statistical description. At most, the input dis-
tribution can be modelled as a member of some parametrized class of distribu-
tions, where the values of the parameters are unknown. In other situations, even
less prior information may be available, so that it is necessary to resort to a
nonparametric model.

Under these circumstances, a simple method readily suggests itself. The
true input distribution F is not known and cannot be used in the quantizer
design algorithms. Nevertheless, it is possible to form an estimate F based on n
observations of the input signal. In the parametric case described above, the un-
known parameters can be estimated; in the nonparametric case, ample statis-
tical techniques are available for estimating a distribution function or a prob-
ability density. If F, is used in any of the above-mentioned quantizer design
algorithms, then it may be hoped for that the resulting quantizer should ap-
proximate an optimal quantizer for F. In a recent paper [8], a group of
researchers showed experimentally and theoretically that this approach yields
reasonable quantizer designs.

Notice that the resulting designs exhibit a random character since they are
based on random data. Alternatively, the distribution Fn on which the design is
based is random; therefore so is the result. The premise of this paper is that the
random quantizer design can be treated as an estimate of the true optimal de-
sign. Then it becomes possible to ask about statistical properties of the esti-
mator, such as consistency, unbiasedness, variance, asymptotic distributions, and
others. These properties give some indication of the usefulness and suitability
of various design procedures.

In this paper we consider the strong consistency property of the above
quantizer estimators. Roughly speaking, consistency means that as more data
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are gathered (n — ) the design should “converge” to the true optimal quan-
tizer for the unknown distribution F. Of the different types of convergence, the
most useful to the designer is strong or with probability 1 convergence [7]. This
ensures that for practically all data sets, the resulting designs tend to the optimal
one. The problem studied here is to investigate conditions under which the
strong consistency properly holds. This question is made more precise in Section
I11, using some notations and terminology developed in Section II.

In Section IV, several propositions and a theorem are developed as tools for
investigations on strong consistency. Finally, in Section V, it is shown by two
examples how the tools may be applied to study two design procedures.

Optimal Quantizers

An N-level scalar quantizer Q is a mapping from the real line into the real
line which assigns to the input x an output Q(x) chosen from a finite set of N
distinct points (called output levels) y, Ly5 < ... . Let {Pl, P, .., ,Pn}
be an exhaustive partition of the real line. Then Q (x) = Y; if x lies in P.. We will
take the viewpoint that Q (x) is intended to approximate x so that P. logically
becomes an interval and ¥; is chosen to be some representative value in that
interval. Graphically, Q (x) is then an ascending staircasc function with N seg-
ments.

Generally, the input X is regarded as a random variable having a known
probability distribution function F (x). It is desired to approximate X by the
N-valued discrete random variable Q (X). The accuration of the approximation
is expressed in terms of an r — th power distortion measure

D(Q,F) = E 1 |X - QX)|"

=/ |x - Qx)|T dF(x) @2.1)

where the integral is taken in the Lebesgue-Stieltjes sense. This is simply an
average error measure. Two popular choices for the exponent are r = 2 which
gives the mean-square error power and r = 1 which gives the mean-absolute
eITor.

An N-level quantizer is said to be optimum if it achieves the smallest
distortion (2.1) among all quantizers having the same number of levels. The
existence of this minimum has been shown elsewhere [2].

We may use PCM as an illustration of the use of quantization. The objective
of a PCM transmitter is to convert a random analog waveform x(t) representing,
for example, a speech utterance, into a sequence of digitally coded numbers.
This is achieved by two operations — sampling and quantization. In the process
of sampling, only the values of the signal at regularly spaced points in time t, are
retained. All other parts of the waveform are discarded. It can be shown [15,
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p 400] that if the waveform is band limited and the sampling rate is high enough,
then the original waveform can be recovered exactly by the following formula.

sin T £ (t - t_)
L S n
x(t) = z x{(t.) (2.2)

-00 HfS (t-—tn)

In this formula fs is the sampling rate.

As a result of sampling, the signal is reduced to a sequence of amplitudes
at well-defined points in time. Theoretically, this step does not introduce any
distortion. Next, the sample values are quantized individually. Letting xj

= x(t,) be random variables, the resultant signal which is transmitted is the
sequence { . . . Q(x_l), Q(xo), Q(xz), . . ).

This sequence can be digitally coded at the transmitter. The receiver constructs
an approximation to the original waveform by

81anS (t - tn)

»
pay
o+
N
n
Il 8

Qx,)
- ® m £ (t - t.) (2.3)
S n

This approximation may be viewed as the original signal plus additive quantiza-
tion noise

. X(t) = x(t) + n(t)
where
- sin T £_ (t - t_)
X(t) = I [xX - Q(x.) ] > .
= o n n -
n = - Il fs (t tn)

If the waveform x(t) is bandlimited, stationary, ergodic and satisfies a few other
technical assumptions, then the mean-square instantaneous noise power is [9]

B (n®()} = B { |x_ - ax )12 )

where the expectation is with respect to the common distribution of the sam-
ples. Thus under ideal conditions, the noise perceived at the receiver is precisely
the mean-square distortion intreduced by quantizing. To maximize the fidelity
of transmission, we must minimize the quantizer distortion.
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Lloyd [9] and Max [11] independently formulated the necessary conditions
for optimality of a quantizer. Let the quantization intervals be P; = (x;_{, X;),
i=1,2, ..., N. For the case of mean-square distortion, the Max-Lloyd neces-

sary conditions are:

X.
;tox - y;) dF (x) = 0 0=1,2, .. ., N
X.

i-1
x, = (y; +yy . )/2 i=1,2, ..., (N-1) (2.4)

An optimum mean-square distortion quantizer must satisfy these two conditions
simultaneously. The first one says that each output level ¥; is a conditionial mean
for the given quantizing interval. The second one says that the endpoints of each
interval lie midway between the two adjacent output levels. If this prescription
" is followed, then Q(x) = y; if y; is the output level closest to x. Thus the
second condition is aptly named ‘“‘nearest neighbor assignment”.

An algorithm for constructing optimal! quantizers, known as Lloyd’s
Method I [9], is based on the Max — Lloyd conditions. The given quantities are
the number of desired levels N and the distribution F(x) of the input random
variable. With these inputs, the algorithm proceeds as follows.

Step 1. Select an arbitrary starting set of output levels

y1<Y2<...<yn.

Step 2. (Nearest neighbor assignment). Construct the quantizing intervals
so that

Pl = (_oo’ xl) Pn = (xN_l) oo)
= = ., N-1
Pi = (%510 %) =2
X; = vy * vy, 1)/2 i=1,2, ..., N-1

Step 3. (Centroidal assignment). Select a new set of output levels to be the
conditional means of the intervals constructed in Step 2. That is,

v; =E [ X [X ¢ P, ] i=1,2, ..., N
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Step 4. Repeat Steps 2 and 3 in turn until the output levels converge.

It has been shown that output levels constructed by the above procedure
will converge. The set of N limit levels then serves to define a quantizer which
simultaneously satisfies the Max-Lloyd conditions (2.4). In most cases, this
quantizer is optimal for the distribution F [8].

Lloyd’s Method I presupposes that the input distribution F is known. For
example, in the case of PCM, F would be the amplitude distribution of speech
(assumed independent of time). In many cases, it is impossible to obtain this
knowledge. One way around this problem is to take n independent random sam-
ples from the distribution F and form the empirical distribution function

A

Fn(x) = (# of samples < x)/n (2.5)
By the Glivenko-Cantelli Theorem [16]

lim F_(t) = F(t) almost surely (2.6)

n > o

at all continuity points of F. In other words, /ﬁn is a strongly consistent esti-

mator of F. We may construct an optimal quantizer Q for ﬁn using Lloyd’sc
Method I. In fact, the implementation of the algorithm turns out to be parti-

cularly simple for empirical distributions [8]. The quantizer Qn is not optimal

for F, but it may be viewed as an estimator of the quantizer Q which is optimal

A

for F. Note that the estimator is a random function. In turn, Q,, has output
A A A
levels Yi» Yg» + « =5 ¥ which are estimators of the corresponding out-

put levels Vi» Ygr = + 5 Yy for Q.

Experiments reported in [8] using speech data show that the ¥. can be close
to y. for moderately large sample sizes. From a design standpoint, 1t is desirable
to know that this always happens. That is

lim Qn = Q
n > o
or that
1 = i = 2 ,,.,N.
lim y, =y, i=1, 2,

n > o
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Of the different types of stochastic convergence, the most useful is almost sure
convergence [7], and it is the one which this paper uses.

Statement of the Problem

The considerations given at the end of the previous section motivate the
formal problem to be stated below. The application to quantizer design is con-
sidered later. First we define a term to be used in the problem statement.

Definition. A sequence{F }of probability distribution functions is said to
converge weakly to a distribution function F if

lim Fn(x) = F(x)

n > o

at all continuity points x of F. Weak convergence is denoted by Fn—> F

Now suppose that a sequence of distribution functions {F_1} converges
weakly to a distribution function F. Let Q be an optimal N-level quantizer for
F_. Two interesting questions may be posed:

(Q1) Do the distortions D(Q F ) converge to D(Q, F)?

(Q2) Does the sequence of optlmal quantizers {Q } converge in some
sense to a quantizer Q? If so, is Q optimal for F?

The condition F_- F may loosely be interpreted to mean that the dis-
tributions F;; become more and more similar to F. The second question then
asks if the optimal quantizers for F, eventually become close to a (hopefully
optimal) quantizer for F. We have not yet defined how quantizers converge. This
will be done in the next section.

Development

We begin the analysis by defining what it means for a sequence of quanti-
zers to converge. To ease the exposition, we will limit ourselves in this paper to
a mean-square distortion criterion (r = 2 in Eq. 2.1). Recall that by the Max-
Lloyd necessary conditions (2.4), an optimal quantizer must satisfy the “nearest
neighbor assignment” rule. Even if a quantizer Q is not optimal, the distortion
may be reduced by applying nearest neighbor assignment (Step 2 of Lloyd’s
Method I). That is, we retain the output levels of Q and change the quantizing
intervals as indicated, thereby getting a modified quantizer Q’ having the same
output levels but a smaller distortion. In the sequel we will assume that all quan-
tizers have been treated in the way, and so satisfy the nearest neighbor assign-
ment rule. This being so, a quantizer Q is completely specified by its output
levels Yi:Y9 -5 Yy To evaluate Q(x) is simply a matter of picking the output
level closest to x.
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With the output level representation, it sounds natural to say that a se-
quence of N-level quantizers{Q_ }converges to a quantizer Q if the output levels
of the Q_’s converge respectiveﬁl to the output levels of Q. This criterion is just
slightly cﬂeﬁcient because the limit quantizer Q may have less than N levels. Thus
we cannot use the product topology to define convergence of quantizers. Instead
we turn to the functional representation of a quantizer, which gives the follow-

ing usable definition.

Definition. A sequence of N-level quantizers {Q_ }is said to converge to a
quantizer Q if Qn(x) + Q(x)at all continuity points of Q.

Notice that this definition allows the limit quantizer Q to have fewer than
N levels. Because of nearest neighbor assignment, the definition is consistent
with the notion of convergence presented earlier. It follows from the definition
that o
lim [x - Q_(x) 17 = [x - Q(X)] (4.1)

n > o

uniformly over compact intervals. This property will prove to be useful later on.
It is possible for the output levels of the Qn’s not to converge to any finite
point. In this case we have the following definition.

Definition. A sequence of N-level quantizers { Qn} is said to diverge if
Qn(x) + o for all x.

Question (Q1) asks about the convergence of distortions D(Qp Fp). To

simplify the situation, suppose that Qp has a single level y1, which is the same
for all n. Also, let ¥_ - F. Intuitively, one feels that since the F}, are getting

“close” to F, the dist%rtions D(Qp, Fy) should be near D(Q, F). That is, it would
be convenient to be able to say that
. 2 2
_ = - dF.
lim f (x yl) dF S (x Yl)

n -> o

This happens if and only if the integrand is uniformly integrable with respect to
{Fn} (7, p 138) . Recall that a function g(x) is uniformly integrable with

respect to { Fn }if
I lg(x)] dF (x) < « for all n
and

lim sup lg (x)| dF _(x) = O.
a+® nJ|x|>a @ n
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Thus, uniform integrability appears to be just the right condition to obtain
convergence of the distortions. This is proven in the following proposition.

Proposition 1. Suppose that F, - F and that a sequence of N-level
quantizers {Qn} converges to a quantizer Q. If (x-y)2 is uniformly integrable
with respect to {Fn}for eachy, then D(Q_, F ) > D(Q, F).

Proof. Recall that (x - Q_(x) )2 > (x - Q(x) )2 uniformly
over compact intervals. Let

2
T, =X, - QX)) G

n n

T o= (X -QX) )2 & G

when X;, and X have the distributions Fy, and F, respectively. By a theorem in
[4, p. 34] it follows that Gn-> G Thus, if Ty is uniformly integrable with
respect to {G_ }, it follows that D(Qqu, Fy) > D(Q, F) [4,p. 32]. It is,
however, moré convenient to have a condition in terms of the F;, ’s. Assume

that Q has N output vectors y1 y2 . .., YN Imagine a hypercube (with sides
of unit length) about yi, and denote the midpoints of the 2k faces by
zi, j=1,2, . . ., 2k, Then
2k .
2
(X-y)2< z (x - 23)
1 - . 1
j=1
Because of nearest neighbor assignment, it follows that
2k .
2 2
[(x - Q (x)17 < z (x - Zi)
j=1

Therefore T is uniformly integrable with respect to {Gn} if (x-y)? is uni-
formly integrable with respect to {Fn} for all vectors y.

QED

Notice that the Q, are not necessarily optimal. Also, the limit c.luant.izejr

Q may have less than N levels. For the uniform integrability condition, it 18
sufficient to check that x2 is uniformly integrable with respect to [Fp]-

The next result answers part of question (Q2).

Proposition 2. Under the conditions of Prop. 1, if Qy, is an optimal N-level
quantizer for Fy, then Q is optimal for F.
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Proof. Suppose that Qp is optimal for Fj. Then D(Q,, F,) < D(Q,
Fp) for any quantizer Q* having N levels or less. By taking limits on both sides
of the inequality, it follows that

D(Q, F) < D(Q', F).

Thus the limit quantizer Q is optimal for the distribution F. QED

We now address the first part of question (Q2), namely: Does a sequence
of optimal quantizers converge? In general, the answer is no, because there
may be several quantizers which are optimal for the limit distribution. However,
all that we really need in applications is a subsequence of { Q _ } which converges.
This can be isolated by the procedure described in the next proposition.

Proposition 3. Under the conditions of Prop. 2, every subsequence of
[Qn} contains a further subsequence which converges to some quantizer.

Proof. Consider the sequence {y], n} of first output levels of the Qp’s.
If this has a finite limit point, then select a convergent subsequence; otherwise,
retain the original sequence. To economize on notation, this subsequence will
be denoted by [¥1, n,1- The corresponding quantizers are denoted by Qpy>. Next,
take the sequence (y2’ n’) of second output levels and select a convergent
subsequence {yz, n’}, if possible; otherwise keep the sequence (Y2,n’)- Do
this for all the output levels in turn. This procedure either produces a convergent
subsequence, or it determines that none of the sequences {y;j} have finite
limit points, i.e., the sequence {Qn} diverges.

We will now show that the latter case is impossible. Suppose that {Qn}
diverges. Then
lim [x - Qn(x)]z = o for all Xx.
n >oo

Let B denote a closed ball whose surface has F — probability zero, and whose
interior has probability greater than 0.9, i.e.

J dF > 0.9.
B

Let M be an arbitrary number. Then for n sufficiently large

S dF_ > 0.9
B n

[x - Qn(x)]z > M for x € B.
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This implies that for large n,

J o [x - Qn(x)]2 an > 0.9 M

and therefore

lim D(Qn, Fn) = o, “4.2)
n-> o

Mimicking the proof of Prop. 2, we conclude that every quantizer Q with
N levels or less has infinite distortion D(Q, F). But we also have, by virtue
of uniform integrability, that

D(Q, F) <= lim inf f [x - Q(x)]° dF

< o,

n

This contradicts (4.2) which means that there has to be a convergent subse-
quence of {Q_1} Clearly, the same argument can be made for any subsequence
of {Qp}. This completes the proof of the Proposition.
QED
We are now in a position to answer the two questions posed in Sect. IIIL.
This is done in the following theorem.

Theorem 1. Assume that F, - F, and that Qp is an optimum N-level
quantizer for Fp. If (x-y)2 is uniformly integrable with respect to {Fj} for each
y, then every convergent subsequence of {Qp} converges to an optimal quantizer
for F. Such a subsequence always exists. Moreover, {D (Qp, Fp)}converges to
the optimal distortion (mean square error) for quantizing F with N levels.

Proof. The first two assertions are merely re-statements of Propositions

2 and 3. To show the last assertion, note that by Propositions 1 and 3, every

subsequence of {D(Qp, Fn)} contains a further subsequence which converges.

The limiting distortion is the same in every case (Prop. 2), and equals the opti-

mal distortion for quantizing F. Therefore the entire sequence {D(Qp, Fp)}
converges.

QED

Applications

The conditions hypothesized in the previous sections may arise when an
N-level scalar quantizer is to be designed for an unknown univariate distribution
F. One approach to this problem is to take n independent samples from F and
form the empirical distribution

;?n(x) = (# of samples < Xx) / n. (5.1)
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According to the Glivenko — Cantelli Theorem [16] Fj converges uniformly
to F with probability 1 as n + . By the Strong Law of Large Numbers [10,
p. 239]

lim S (x - y)2 d;‘ (x) = J (x - y)"2 dF(x)
n > o |x|>a n x| >a

with probability 1 provided that the second moment of F is finite. Thus (x-y)2
is uniformly integrable with respect to the sequence of empirical distributions
{F_1. As discussed in the introduction, we may choose a suitably large number
of obseryations n as the basis for a quantizer design. Then the optimal quantizer
Qn for Fp serves as an estimate of the desired optimal quantizer for the un-
known distribution F. According to Theorem 1, this estimate is strongly con-
sistent with probabili/t\y I, that is, Qp convergesto Qasn - o . Moreover

the distortion D(Qp, Fp) computed for the estimate is also a strongly consistent
estimate of the optimal distortion for F.

The analysis can be extended to vector quantizers. Let 1, x2,...,
XKk) denote the scalar components of a k-dimensional vector X. Similarly the

marginal distributions of a probability distribution F on RK will be denoted by
F1,F2, ... Fk Let

k
I=X[-a,a].
i=1
We have
9 k . P 9
Jo (x-y)" dF(x) = : /o (x* - vy )° dF(x)
I I
i=1
k i i 2
< TSy (x7 - y)T aF' (x1)
-1 Ix7] >a
i=1

Each of the terms on the right — hand side involve scalar quantities of the type
previously discussed. Therefore multi-variate empirical distribution functions
also result in uniformly integrable sequences (with probability 1) provided
that-all second moments are finite. The succeeding developments readily gene
ralize to several dimensions, including the Glivenko — Cantelli Theorem [6]-
Thus the comments made above for scalar quantizers apply to vector quantizers
also. Numerical experiments verifying these conclusions are presented in [8]-

As a second example, consider that the probability density f to be quan”

tized is univariate normal with unknown mean y and variance g >0
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Let n (x) denote the standard normal density

1 2
n(x) = — e X /2
vV 2T
Then we may write
1 X - U
f(x) = — n( ) (5.2)
o o

Let X1, X2, . .. be independent, identically distributed samples from f. Strongly
consistent estimates of the unknown parameters u and < are, respectively,
the sample mean and variance

A _ _1 n
“n = n z X1
i=1
n
~ 2 -1 ~ 2
no By ) (5.3)

A reasonable estimate for f is a normal density with these parameters, i.e.,

A

X\~ U
n

G (5.4)
n n

Clearly, this estimator is strongly consistent, so that fnconverges weakly to f.
Moreover,

S (x - y)2 %n-(x) dx = 8n2 + (un

- y)2

Since the estimates are strongly consistent, it follows that

lim £ (x - »2  (x) dx = S (x - 2 £ (x) dx
n-o
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with probability 1. This is equivalent to having (x-y)2 uniformly integrable
with respect to{f }. Therefore the optimal quantizer Qp designed for density
fn is a strongly consistent estimate of the optimal quantizer for the unknown f.

The family of normal densities used in this example can be replaced with
any class of almost everywhere continuous densities parametrized by location
and/or scale parameters. For example, the Laplace, gamma and Rayleigh den-
sities have been occasionally used to model the distribution of speech amplitudes.

Many other estimation methods for probability densities can be used in
quantizer design. The strong consistency properties of designs based on these
methods will be reported in another paper.

Conclusion

We have introduced the concept of convergence of quantizer sequences,
and used it to investigate strong consistency properties of quantizer designs
based on sampled data. Several propositions and a theorem were developed as
tools in the study. Uniform integrability of certain functions with respect to
the estimated distributions is shown to be a sufficient criterion for strong
consistency. Finally, these propositions were applied to two procedures for

designing quantizers; one involves empirical distributions and the other uses
density estimates.

For clarity of exposition, the discussion was limited to mean-square dis-
tortion for vector quantizers. However, the methods described are capable of
much greater generalization. Other treatments similar to the one described in
the pages may be found in references [1] and [3].
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