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Abstract

Multiple objective programming (MOP) has undergone a rapid period of
development in the 1970’s. Concurrently, increased land-use pressures have
stimulated forest land management analysts to develop and utilize more sophis-
ticated planning aids to address complex multiple use issues involving multiple
objectives and decision-makers. In this paper, a selected set of MOP metho-
dologies are reviewed and evaluated in terms of their utility and applicability as
land management planning tools. The STEP method is selected as an appropriate
technique and is applied to a forest land management problem. Two objective
function weighting procedures are illustrated. Although no MOP technique by
itself can resolve land management conflicts, the STEP method offers promise
as a rational -systematic means of exploring alternative feasible solutions to the
multiple objective forest land management problem.

Multiple Objective Programming (MOP) or Multi-Criteria Decision Making
(MCDM) is concerned with planning problems in which several conflicting ob-
jectives are to be optimized simultaneously. Multiple use forest planning exem-
plifies this situation because most forest land use planning problems involve 2
consideration of multiple conflicting goals and objectives such as: increased net
revenue from timber resources, improved water quality, protection of wildlife,
preservation of natural beauty, and increased recreational opportunities. The
satisfactory attainment of these objectives is a major concern in forest land
management planning. The applicability of MOP as a planning tool for forest
land management planning is the primary motivation of this paper.
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The application of mathematical programming to forest land management
has been limited mainly to linear programming (LP) and goal programming
(GP). Despite the fact that multiple use has been recognized, and regarded by
some as an operational concept, for almost two decades [25], land use analysts
have only recently begun to develop planning models capable of adequately
handling multiple objectives. To date, most of the literature dealing with metho-
dologies for multiple objective forest land management planning is based on the
use of GP [1], [4], [5], [6]1, [13], [14], [15]1, [19]1, [201, [21], [29],
[30], [31], [32]. Recently, however, questions concerning the inappropriate-
ness of GP to capture the vital characteristics and elements of forest land
management planning have been raised. The most intriguing implications of
GP are those described by Cohon and Marks [12] and Dyer et al. [16]. These
implications will be discussed in detail in a latter section.

The potential of MOP methods as analytical aids for future land manage-
ment planning systems appears very promising [3]. For example, recent amend-
ments to the National Forest Management Act of 1976 (NFMA) require the use
of a new systematic and analytical planning approach to land use planning
for the National Forests. The growing awareness among forest management
scientists of the use of MOP techniques is evidenced by several recent papers
describing forestry applications [2], [9], [15], [34].

The development of MOP techniques has been largely due to professionals
responsible for optimizing the management of water resources. However, during
recent years, management scientists have also made significant contributions. A
comprehensive review of MOP methods is discussed in Cohon [11]. In this paper,
only a selected number of MOP methodologies will be reviewed in order to high-
light their characteristic features and evaluate their applicability to forest land
management planning. Readers interested in a detailed discussion of these and
other methods are encouraged to refer to [2], [11]. A case study is also presen-
ted to demonstrate the use of one MOP methodology.

Mathematical Background

The general MOP problem involving p objectives (Z; ), n decision variables
(Xj) and m constraints (gi) with bi right hand sides may be expressed as:

Max Z(xl)xz’ ce Xn)=[zk (XI’XZ, SR ,Xn)fOI'k= 1,2, . p](z.l)

subject to:
gy (X3, X5, . . ., X)) by fori=1,2,....m (2.2)

ijoforj=1, 2, . . .,n

where Z is a vector valued function consisting of the objective functions Zk(Xj),
fork = 1,2,...p.
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IfZ (X.) and g foralli= 1,2, ,mandk=1,2,...,p are linear with
respect to X Jfor all j ] 1,2,...,n, the multiobjective problem is referred to as a
multiple objective linear program (MOLP). In this case the problem described in
(2.1) and (2.2) can be expressed as:

Male = C”Xl +C12X2+...+Clnxn

Max 22 = C21 Xl + C22 X2 +...+ Cznxn (23)

Mapr=Cp1 X1+Cp2X2+...+C X

pn“*n
subject to:
allxl + a12X2 + . . .+ ain Xn < b1
ay1Xy +agX, + . . . +a, X< b, (2.4)
am':LXl + améXZ e amnxn < b |
where
ij = quective function coefficients associated with objective func-
tion k and decision variable Xj.
Zy = objective function value for objective k
ay = technological coefficientsassociated with constraint i and deci-

sion variable X i

b, = limiting value of ith input resource.

. The formulation in (2.3) and (2.4) closely parallels, and is an extension of,
classical LP. However, the concept of an optimal solution as used in classical
single objective optimization has a nebulous meaning in MOP. In general, 3
vector such as Z in (2.1) cannot be optimized except for the trivial case where

ideal solution™ exists (i.e. all objectives are complementary and can be
maximized simultaneously). Hence, in MOP, a different conceptual view of op-
timization is required.

To approach this formally, all feasible solutions to (2.3) and (2.4) are classi-
fied into two mutually exclusive sets: (a) nondominated [sometimes called
non-inferior or pareto-optimal] solutions or (b) dominated [or inferior] solu-
tions!,

Clearly, a decision maker would like to select a nondominated solution a$
the preferred choice. However, in the presence of multiple competing objectives
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there will be several (perhaps many) nondominated candidates to select from. In
the absence of a utility function which expresses preferences over the entire set
of nondominated solutions the decision maker is unable to select an “optimal”
solution. Instead the decision maker must articulate a set of preferences for the
various objective functions by implicitly or explicitly weighing each objective.
The preferred nondominated solution is labelled the “best compromise” re-
flecting the fact that “best” is dependent upon the articulated preferences.

Multiobjective Programming Methods

MOP techniques can be classified into three categories: (a) generating tech-
niques, (b) noniterative techniques where the preferences are articulated prior
to the analysis, and (c) iterative techniques which incorporate preferences
through an interactive process involving the analyst and the decision maker.

Generating Techniques

Generating techniques refer to those approaches whereby the analyst gene-
rates the entire set of nondominated solutions in the absence of any preference
information from the decision maker. Given this set of solutions, the decision
maker applies his preference structure to arrive at the best compromise.

Several approaches have been suggested for generating the entire nondomi-
nated set. Among these are the multi-criteria simplex [18], [37]; methods based
on weights [22], [26], [28], [36]; and constraint methods [24].Only a discussion
of the latter method will be presented to convey the general nature of these
approaches.

The constraint method is intuitively appealing because one objective is -
selected for optimizing while all remaining objectives are constrained to so{ne
pre-specified value [24]. The method works by generating a pay-off table which
contains the values of p objective functions. The optimal value for each of the
p objective functions is recorded on the diagonal of the pay-off table ar}d the
off-diagonal elements are computed by evaluating each object.ive function at
each of the optimal solutions. The largest and smallest number in eth golumn
represents the range over which the right hand side of each constraint is para-
metrically varied while one of the selected objectives is optimized. To facﬂ.lta'te
the parametric programming, only a selected number of different values within

the range are examined.

This method suffers from the excessive computational burden required to
conduct the parametric analysis of each right hand side. For example, given p
objective functions and r values for each right hand side there are P! linear
programming problems to solve. While parametric linear programming can re-
duce this computational burden, it still is excessive for realistic-sized land

management planning problems.
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Noniterative Techniques

Noniterative techniques require that the decision maker articulate prefe-
rences prior tothe analysis.These methods avoid generating the entire set of non-
dominated solutions but they require considerable information concerning goal
preferences before any knowledge of trade-offs is known [11]. Techniques repre-
sentative of this approach include: (a) utility theory, (b) goal programming and
(c) the surrogate worth trade-off.

Goal programming has been extensively discussed in the forest land ma-
nagement literature (4], [15], [16], [19], [21]. Thus, attention here will
focus on only a few of the relevant characteristics of goal programming.

Perhaps the most widely discussed feature of goal programming is its ability
to incorporate cardinal weights as well as ordinal rankings to facilitate the ex-
pression of goal preferences. Several authors have discussed the disadvantages
associated with ordinal rankings expressed through preemptive priority factors
[11], [16], [21]. Particular problems encountered when using preemptive prio-
rities include: (a) the possible selection of a dominated solution as the preferred
alternative and (b) the acceptance of an infinite trade-off ratio between goals
ranked at different priority levels. These problems can be alleviated by using
either cardinal weights or only minimizing negative deviations of ordinally
ranked goals.

The surrogate worth trade-off method involves the computation of trade-
offs between successive pairs of objective functions. This is done to approximate
the decision maker’s utility function for a subset of nondominated solutions.
This subset is generated by transforming a p-objective problem into a two-
objective problem where one objective, r, is maximized while a second ob-
jective, q, is constrained to be greater than or equal to some specified level,
L _. The remaining p-2 objectives are set equal to some level, Lk By parametric
vaﬂiation of L_, a portion of the nondominated set is approximated.

In addition to tracing out a portion of the nondominated set, the above
process also provides trade-off information between objectives r and q. This
trade-off, to varies with the different levels assigned to L . These trade-offs
are presente% to the decision maker to elicit information about the implicit
utility function being approximated. The decision maker provides a value,
W (labeled the surrogate worth) for each trq'

The method is based on the premise that given a nondominated solution,
a decision maker will compare the magnitude of trq (the slop'e of the non-
dominated set) with the marginal rate of substitution (MRS) between the
value of objectives r and q (the slope of the indifference curve) [11]. If trq
is less than the MRS for a given value of objective r then a positive surrogate
worth is assigned to wrg. Surrogate worths are restricted to lie in the interval
+ 10, depending upon the decision maker’s valuation of trade-offs. When the
slope of the nondominated set equals the slope of the indifference curve, a
surrogate worth of zero is assigned. The set of wrq for all assigned values of
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Lq represents the surrogate worth function.

The best compromise solution for objectives r and q is identified at the
point where the slope of the nondominated set and the slope of the indiffer-
ence curve are equal. Following this, the remaining objectives are considered
in pair-wise fashion. This analysis results in the generation of p-1 surrogate
worth functions. The value (Zq) for p-1 of the objectives is calculated at the
point where the surrogate worth function equals zero. Then, the remaining-
arbitrarily selected objective is maximized subject to the constraint that the
remaining objectives be greater than or equal to Zq.

Interactive Techniques

Interactive techniques are those which provide for interaction between the
decision maker and the analyst and lead to an articulation of preferences by the
decision maker as nondominated solutions are presented at each iteration. With
new preference information provided at each iteration, the analyst generates
another nondominated solution for the decision maker to examine. Through this
interactive process, the decision maker eventually arrives at the best compromise
solution. '

Several techniques which follow the interactive approach are: (a) the STEP
method developed by Benayoun et al. [7], (b) the method of Zionts and Wallen-
ius [38], and (c) Steuer’s method [33]. Because of its conceptual appeal and
computational efficiency, the STEP method is a promising tool for forest land
management planning. Thus, it is discussed in detail in the following paragraphs.
Steuer’s method is discussed and applied to a forestry problem in Steuer and
Schuler [34]. Other interactive techniques are those of Dyer [17], Benson [8]
and Geoffrion, Dyer and Feinberg [23]. An evaluation of some of tiiese methods
is given by Wallenius [35].

The STEP method of Benayoun et al. [7] is based on the concept of the
ideal solution. However, while the ideal solution approach is essentially a non-
iterative method, the STEP method relies on an interative approach for iden-
tifying the best compromise solution. The ideal solution is defined as that solu-
tion which simultaneously optimizes each objective when considered individual-
ly. Generally this solution is infeasible. If it isn’t, there is no conflict as all
objectives can be met simultaneously.

If the ideal solution is infeasible, the feasible solution which is “closest”
to the ideal is identified. Different solutions can be found depending upon the
decision maker’s definition of “closest.” In general, the distance between two
points X and Z with coordinates (X1, Xy, - . » Xp)and {Zy, Z,, .. ., Z,) is:

d = {I|X - z|°‘}l/°‘
o

where 1 < o < « (2.5)
Thus depending upon the value selected for a —the distance metric — a different
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solution can be obtained.

If o =1, and we ignore the absolute value sign in (2.5), the best compromise
solution is equivalent to an equal weighting of each objective. Thus, minimizing
the deviation between the ideal solution and the best compromise solution is
equivalent to equally weighting each objective [11]. At the extreme, if o = = the
largest deviation between the ideal and the best compromise solution determines
the final compromise.

In general, as the distance metric is varied, a series of compromise solutions,
forming a subset of the set of nondominated solutions, is generated. Zeleny [37]
refers to this as the “‘compromise set.”” It is left to the decision maker to select
the distance metric to employ in any particular decision situation.

The STEP method, seeks to identify the best compromise solution by pre-
senting sequential compromise solutions with each reflecting the decision
maker’s preferences. Each iteration consists of a calculation phase and a decision
making phase. The method begins with the construction of a pay-off table which
is found by solving (2.3 — 2.4) sequentially for each of the p objective functions.
For the kth objective we obtain a solution (xkK) which maximizes Zk. This maxi-
mum value is labelled Mk. The values of the remaining p-1 objectives are then
evaluated at XK. These values are used to fill out the kth row of the pay-off
table. The diagonal elements represent the ideal solution where the maximum
value of each objective is realized.

The calculation phase of the STEP algorithm seeks to find a compromise
feasible solution which is “nearest” to the ideal solution. This is accomplished
by minimizing the maximum difference D between the p objective function

values and their respective maximum values Mg. This involves solving the LP
problem:

Minimize D (2.6)
subject to

D <w [M - Z, (X, X,, ...,xn)] for k = 1,2, ...,p (2.7)
x e X! (2.8)

Constraint (2.7) ensures that D is no larger than each weighted (wyg) diffe-
rence between the maximum value and the actual valueof each objective. Eq.
(2.8) defines the feasible region as constrained by the m resource constraints
identified in (2.4). The feasible region is reduced at each iteration. That is,
x1 = xfori=1butxlifori > 1isamodified form of x which incorporates the
decision maker’s reaction to the solution found at the (i-1)th iteration.

The weights (wy) indicate the relative magnitude of the deviations from the
ideal solution for each objective. Three options exist for specifying these weights:
(a) all Wy may be set equal, (b) any set of weights selected by the decision
maker may be used, or (c) the following formula approach may be adopted.
In the latter approach, the weights include two components; a scaling term
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(2.9) and a normalizing term (2.10). They are calculated as:

W = ak/Eak (2.9)
Me — ™y 21 -1/2
where ay = —M-k—— . [chj ] (2.10)

Term 1 Term 2

in which my is the minimum value of the kth objective found by finding the
smallest cell in the kth column of the pay-off table and ck; is the coefficient for
the jth decision variable for the kth objective function.

From term 1 in (2.10), observe that if the value of Zy does not vary much
from the maximum value, the corresponding objective is not sensitive to a
variation in the weighting values. Thus a small weight wi can be assigned to this
objective function. As the variation increases the weight becomes corresponding-
ly larger. The second term in (2.10) normalizes the values taken by the objective
function. Thus, wy represent normalized weights on the various objectives which
in turn depend on the variation of the value of the objective from the ideal
solution. Lastly, the wy are scaled to sum to unity (2.9).

Solving (2.6-2.8) yields a solution x© = (X?: Xg, ce ,Xg) and a vector of
objective function values. These latter values are compared with the ideal solu-
tion to ascertain whether a satisfactory compromise has been achieved. If not,
the next step (decision making phase) consists of asking the decision maker to
indicate which objectives in the solution are attained at satisfactory levels and
which can be reduced so that levels of unsatisfactory objectives may be increased.
The decision maker must identify the satisfactory objectives*ng (X°) that can
be reduced and the permissible amount of reduction AZg. Before the next
iteration, the relative weights (wg) of the satisfactory objectives are set equal
to zero. The feasible region X1 is modified by the additional constraints;

z:z(k) > Z:Z (XO) —AZ{: for all k* (2.11)
s
z (x) > 2z, (X°) for all k # k (2.12)

The iterations continue until the decision maker is satisfied with the
results — an indication that a best compromise solution has been found. If, at
any iteration the decision maker feels that none of the objectives are satis-
factorily achieved, the algorithm stops with the conclusion that no best com-
promise solution exists. At most, p iterations are performed after which the
decision maker is satisfied or it is concluded that no best compromise solution
exists. The latter case implies that the decision maker is not willing to forfeit
any amount of the satisfactory objectives to improve the unsatisfactory ones.

Evaluation of Techniques

Cohon and Marks [12] established three criteria for judging the appli-
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cability of the various MOP techniques: (a) computational feasibility, (b) expli-
cit quantification of trade-offs among objectives and (c) production of sufficient
information to facilitate an informed decision. Bare, Mendoza and Mitchell
[2] established two classes of evaluative criteria: (a) applicability and (b) utility.
In order that a method be regarded as applicable to a forest land management
planning problem, it must possess the following characteristics: (a) assumptions
must not be violated by the land use planning situation, (b) data requirements
must be feasible, and (c) it must be able to computationally solve the formulated
problem at a reasonable expense. On the other hand, the utility of a MOP
technique can be judged by: (a) the explicitness of trade-offs, (b) the com-
plexity of the methodology, and (c) the degree of prior application to related
problems. These evaluative criteria will be used to judge the appropriateness
of the MOP techniques discussed above.

Generating techniques are regarded as inappropriate for the forest land
management problem because they generally fail to meet the computational
requirements associated with land use problems. Furthermore, no trade —
off information is provided to the decision maker. Although the methods are
quite complex, data requirements do not appear to be a limiting consideration.
Cohon [11] prefers the generating methods because they clearly identify the
role of the analyst as an “information provider”, not actively engaged in the
decision making process. Nevertheless, we believe the methods involve excessive
computations to make them valuable as land management planning tools.

Some of the noninteractive methods appear to be useful for forest land
use planning. In particular, GP, which has been applied to forest land manage-
ment problems, appears to hold great promise. The computational requirements
are acceptable and the method is easy to understand. Trade-offs between ob-
jectives are available if cardinal weights are employed and, with the exception
of providing these weights, the data requirements are not excessive. The genera”
tion of dominated solutions through the use of preemptive priorities is a draw-
back of GP. However, ways to circumvent this are available.

Although the surrogate worth trade-off is a powerful technique, its ex
cessive computational burdens rule it out as a possible technique for realistic*
sized forest land use planning problems. Further, the complexity of the tech

nique is also a disadvantage. Finally, it requires information from the decisio®
maker that is not usually available.

The authors believe that the interactive methods offer the best promise
for multi-objective forest land management planning problems. The general
approach of these techniques facilitates the development of preference i
formation during the problem solving session to permit an efficient search fof
the best compromise solution. The ideal solution and the STEP method aré
the two most appropriate techniques based on the evaluative criteria outlilled
previously. These methods are applicable to forest land management planning
problems in that they can computationally accommodate problems of the SiZ¢
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cncountered and the methodologics are easy to understand. The only disad-
vantage is that trade-offs are not explicitly generated.

The most important difference between the ideal solution and the STEP
method is that the latter permits the decision maker to change the feasible
region at cach iteration. We believe this is important because it encourages the
decision maker to concentrate on attainment of objectives and not on the
distance metric. The STEP method also uses the highly efficient simplex which
is familiar to forest planners. The method works towards a best compromise
solution by trying to minimize the distance between the ideal solution and the
best compromise. This is intuitively appealing as it clearly shows that compro-
mises must be made between different functions if the best compromise solution
is to be identified. The method is not as complex nor as computationally de-
manding as the surrogate worth trade-off method. However, an explicit cal-
culation of trade-offs between objective functions is not provided as part of

STEP.
An Application of the STEP Method

Land use planning for publicly managed forests normally involves the
allocation of certain areas of land to best "achieve a balanced production of a
variety of goods and services. Typically, a consideration of timber, forage,
wildlife, water, recreation and wilderness values are involved in this process.
In order to demonstrate the role of MOP in the forest land use planning process,
a simplified case study is presented. Only an integration of timber and wildlife
are considered in the example, but the conceptual framework is flexible to
incorporate other resource outputs and values.

The problem concerns a forest area of 253,000 acres with 183,000 acres
predominantly covered by Douglas-fir and 70,000 acres covered by true fir
in the cascades of western Washington. The age class distribution in terms of
the area occupied by each age class is shown in Table 1.

The forest area is inhabited by numerous wildlife species. However, six
species are selected as “indicator” species representing six major life forms
believed to be the major inhabitants in the area. Table 2 shows the approximate
number of species that feed and/or reproduce during three successional stages
of forest development. The data shown in Table 2 are hypothetical, but are
reasonable estimates. Information available in the wildlife literature is inade-
quate for providing a more conclusive quantitative base.

From Table 2, Tables 3a and 3b are constructed showing how different
management alternatives affect the six indicator species. Management alter-
natives are defined on the basis of rotation and timing of the first harvest.
A 100-yr. planning horizon is specified and divided into 10-yr. planning periods.
Two management alternatives are specified for each age class.
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Table 1. Cover Type and Age Class of Case Study Area

Age class Douglas-fir True fir
Area (Acres) Area
(Acres)

0-10 27,000 10,500
11-20 21,000 7,000
21-30 19,800 7,000
31-40 14,400 6,300
41-50 14,400 5,600
51-60 10,800 4,900
61-70 10,800 4,200
71-80 10,800 2,800
81-90 10,800 2,100
91-100 10,800 2,100

100+ 32,400 17,500

Biiihed
183,000 70,000

Table 2. Apprqximate number of species that feed or reproduce
at various stages of forest development in case study

area.

Douglas-fir (Ave. site = | 10)
Forb-brush/ Young

True fir (Ave. Site = 80)

Mature Forb-brush/ Young Matur®
Indicator Species Seedling (0-25) (25-80 yrs) (80+years) Scedlings (0-25) (25-80 yrs) (80+yﬁ)
1. Pacific Giant [X 0] (x0]
Colomander 100 80
2. Douglas squirrel [X0] [X0] [X0) (X 0] (X 0] [x0]
1 32 4 2 1.6 28
3. Black tailed deer [X0] (X 0] [X 0] (X 0] [X0] (xol
12 .006 018 096 0024 01~
4. Porcupine [ o] [0] (0] [X0) X]
021 021 018 03 © 021
5. Hairy woodpecker (x0] [x0] [X 0] (x0]
30 5 20 45
6.  Gapper's red-backed vole (X 0] (X 0] (x0] (x0] [X 0] (x0]
45 10.5 15 1.5 7.5 13.5

x = reproduction
0= feeding
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The objectives of management are to: a) minimize timber volume harvested
from the forest, b) maximize the number of indicator species existing in the
area, and c) control (i.e., minimize) the production of porcupines. Resource
constraints which must be satisfied include: a) acreage of forest land by age
class and b) nondeclining timber harvest policy imposed on a decadal basis.

The major question facing the land manager is how to allocate the forest
land base (i.e. acres by age class and species) to each management alternative to
best attain the stated objectives. From Tables 3a and 3b, it is evident that not
all objectives can be achieved simultaneously. Thus, some trade-offs among
objectives are necessary. Furthermore, the large number of possible combina-
tions of assignments of acres to management alternatives suggest the use of a
MOP approach to the problem. From the earlier evaluation of MOP techniques

the STEP method is selected for this problem.

The calculation phase of the STEP method involves the construction of
a pay-off table. This is done by solving (2.3-2.4) for each of the p objective
functions. For the case study (2.3-2:4) take on the following form:

—
Max Zk
for k=1, 2, . . .7
dk #5 11 2
an = Y .
j=1 L G it g Yn
Min 2y
for k = 5
subject to
2
for j =1.2, ...1
Xy <A J
1=
z for j =1, 2 1
or j = ) e
I Y28 i=1n
1=1
Ve 2 Veq for t =1, 2, ... 10
where
Cxi= objective function coefficients denoting amount of timber or

! number of indicator species produced per acre of land in Douglas-

fir managed under alternative 1.

Py; = Same as above except for true fir'acres
le = Number of areas of Douglas-fir in age class j managed under alter-

native 1 '
Yj1= Same as above except for true fir acres
Aj = Total number of acres of Douglas-fir in age class i.
Bj = Same as above except for true fir acres.

Vi= Total board foot harvest volume in period t
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This problem involves seven objective functions which are: a) maximize
timber harvest volume, (b) maximize wildlife species 1, 2, 3, 5 and 6, and c)
minimize wildlife species 4. By solving the above formulation sequentially for
each objective function the pay-off table shown in Table 4 is constructed. The
ideal solution is given by the solutions corresponding to the diagonal elements
of Table 4. Obviously, however, this solution is infeasible. Thus, a compromise
solution must be determined.

Table 4. Pay-off Table for Case Study

Objective Timber Vol Numbers of Animals

Function (bd. ft.) Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
1 12,908,376,334 3,602,220 1,237,496 34,570 16,790 67,188 4,738,900
2 12,130,183,780 4,453,062 1,169,030 33,206 17,842 75,157 4,6]3,863
3 12,807,385,660 3,192,900 1,256,480 34,558 18,531 69,917 4,718,370
4 12,838,996,140 3,439,300 1,243,795 34,994 21,883 69,864 4,661,888
S 11,452,860,300 3,139,120 1,216,729 31,710 16,250 65,541 4,600,7?-6
2 12,389,625,800 4,007,820 1,754,320 33,076 17.832 76935 4,628,361

12,327,823,070 2,848,200 1,231,166 33,679  17.961 67234 4,784,175
, 478477

Two weighing approaches are considered in deriving compromise solutions.
The first approach involves the use of calculated weights (2.9-2.10) wherein
the weights are a function of the difference between the ideal solution and the
compromise solution. Eq. (2.10) is slightly modified by omitting term 2. The
second approach utilizes an equal weighing of all objectives. Before calculating

any compromise solution, all objective function coefficients are scaled to com”
parable magnitudes.

Summary of Results

Table 5 describes a summary of three compromise solutions derived usin®

calculated weights. From the pay-off table (Table 4) and using (2.9 and 2.10,
modified) a set weights are calculated as shown below:

Objective Function ak o
1. Timber Vol. 0.112575 0.102
2. Species | 0.29506 0.267
3. Species 2 0.06959 0.063
-4,  Species 3 0.09384 0.084
5. Species 4 0.34660 0.314
6. Species 5 0.14810 0.134
7. Species 6 0.0383 0.034

1.10406
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These weights are included in (2.6-2.8) and are used to derive the first com-
promise solution as shown in Table 5. The percent difference between the
maximum (minimum) value and that produced by the compromise solutions
are also shown in Table 5.

Table 5. Summary of Compromise Solutions with Calculated Weights

Objective Maximum/ First % Ditf. from Second % Diff. from Third
Function Minimum Compromisc Maximum Compromise Maximum Compromise
T.Vol. 12,908,376,234 12,378,534,003 4.02 12,417,960,263 3.79 12,418,243,130
(bd. ft.)

Species 1 4,453,062 4,305,688 3.31 4,274,939 4.00 4,274,939
Species 2 1,256,480 1,170,475 6.84 1,176,876 6.33 1,176,976
Species 3 34,994 32,334 7.60 33,558 4.10 33,558
Species 4 16,250 17.504 7.16 17,777 8.5 17,774
Species § 76,935 74,313 3.41 75,757 1.5 74,045
Species 6 4,784,175 4,580,609 4.25 4,607,763 3.68 4,607,740

From Table 5, it is judged that current attainment levels for indicator
species 1 and 5 are acceptable and that a four percent relaxation from these
levels is permissible. This reduction then allows the reallocation of resources

to better attain remaining objectives.

Following a recalculation of weights (wg) the problem expressed in
(2.6-2.8) is again solved to obtain the second compromise solution shown in
Table 5. At this point it is judged that species 2 and 4 are not being produced
at satisfactory levels. In order to free up additional resources, the current attain-
ment levels for the following objectives are reduced: (a) timber volume and
(b) indicator species 1, 3, 5 and 6. After computing new weights, eqs. (2.6-2.8)
are solved and a third compromise is obtained (Table 5). At this point, the
solution is judged to be the best compromise available and the procedure is

completed.

For comparison, a second set of compromise solutions is sought by using
equally weighted objectives. A process similar to tbat psed for cfalculated weights
is employed. The attainment levels for each objective .functlon are shown in
Table 6. A comparison of the third compromise solution shown in Tables 5
and 6 reveals that the method of equal weights provides better attainment
levels for five of the seven objectives. However, the attainment levels for zll
seven objectives are very close to one another. Thus, it appears that either

weighing method produces comparable results for this problem.
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Table 6. Summary of Compromise Solutions with Equal Weights

Objective Maximum/ First & DIff. from Second % Dift. trom Third

Function Minimum Compromise Maximum Compromise Maximum Compromise
T.Vol.

(bd. ft.)  12,908.376,234 12,435.212,170 3.006 12,435.121.170 .00 12.435,121.170
Species | 4,453,062 4,295.302 2.54 4.274939 4.0 4,274,939
Species 2 1,256.480 1,184,655 5.72 1.184.655 s 1,185,311
Species 3 34,994 33.416 4.51 33.450 4.51 33450
Species 4 16,250 17,827 9.7 17,793 8.67 17.930
Specics 5 76,935 74,515 3.14 74.751 2.83 74,688
Species 6 4,784,175 4,644,753 291 4,637,530 3.1 4,639,916

Summary

In this paper, different MOP techniques under three general approaches
are described and evaluated. Of the three methods, the interactive approach .
is favored as a better alternative for analyzing forest land management planning
problem.s. Among the interactive approaches, the STEP is judged as the most
appropriate for land use planning because of its computational efficiency and
simpler algorithmic procedure. Its main disadvantage is its inability to generate

explicit trade-off information. A case study j e
mentation of STEP. y illustrates the conceptual imple

Bare a‘_ld Kitto [3] believe that no MOP method will solve all land manage-
ment planning prqblems, Further, to be effective, an analytical methodology
should be used to identify and formulate new alternatives and not to determine
the optlma_l sglutlon to the planning problem. Forest planners should recognize
that the principal use of MOP techniques is to provide a systematic and analytical

approach to help identify and facilitate an evaluation of new alternatives and
not to produce an “instant plan.”

Forest land management planning systems are “wicked systems” whose
elements can not be sufficiently captured by any single MOP technique [10],
[27]. Brill [10] advocates the joint use of simulation and optimization models
to address these problems. This approach may be useful in forest land use
planning where the combination of two or more models can offer a better
perspective of the land management planning problem.

Another important concern in forest land management planning involves
the integration and coordination of multiple decision makers. Ecology, envi-
ronmental planning, politics and forest management are just a few of the dis-
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ciplines involved in forest land management planning. Analysis of multiple
decision maker problems is just beginning to attract the interest of forest manage-
ment scientists and resource planners. However, with the emphasis placed on
public input, it is clear that this area descrves increased attention.
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