“List processing allows one to manipulate
records without physically moving them
instorage.”’

Discrete System Simulation

e

by Armando de la Cruz*

Introduction

Simulation is a problem solving technique. However, it does not generate
alternative solutions. Rather, it only evaluates alternative operating policies
and system configurations. Furthermore, simulation by itself cannot provide
the best operating policy or the best system configuration.

Simulation attempts to duplicate or imitate the behavior of a system
over time through the use of a dynamic model. Simulation therefore provides
decision makers a basis for improving system performance through operating
procedure modification or system redesign.

Systems

A system is a set of interacting objects, each having its own characteristics.
We refer to the objects as system entities and to the characteristics of an object
as attributes. The interactions among the objects which are called activities
cause changes in the system.

The set of attributes of an entity defines the state of that entity, and the
states of the critical entities of a system define the state of that system. The
study of system behavior over time involves the study of its state changes as
time elapses. An event is said to have occurred whenever thcre is a change in
the state of an entity. There is therefore no change in the states of entities
between events. Hence, simulation is a process of making all state changes
at the time corresponding to a particular event and then moving simulated time
to the time of the next event.

Applications

Simulation has been applied to a wide variety of problem areas. Listed
below are examples of some of its applications.

1. Simulation of the operations of a supermarket to determine system
performance as affected by changes in policies (e.g., number of open

* Professor of Industrial Engineering, U.P. College of Engineering

61

checkout counters, number of express checkout counters, maximum
number of items a customer should have for him to be allowed to join
the express checkout counter, and so on).

2. Simulation of the operations of a bank to test policies designed to
shorten customer waiting time.

3. Simulation of a pedestrian crossing to determine acceptable time
duration of walk time.

4. Simulation of a job shop to determine the amount of in-process storage
space that should be provided in each department.

5. Simulation of a job shop to compare alternative dispatching policies.

6. Simulation of steel-making operations to evaluate alternative sizes of
oxygen tank and oxygen delivery rate.

7. Simulation of a maintenance operation to determine the best size of
repair crews.

8. Simulation of a city street lamp system to determine the best replace-
ment policy.

9. Simulation of an inventory system of a factory to evaluate alternative
reordering policies.

Model Structure

Two sets of relationships are used in representing a system for simulation.
One set includes the mathematical relationships that exist between attributes
associated with the entities. For example, if n is the number of customer in a
system, we set n to (n + 1) when a customer arrives and we set n to (n — 1)
when a customer departs. The other set includes the logical relationships that
exist between conditions (states) and actions. For example, when s server
becomes free and there are other jobs waiting (conditions) he begins service
(action). If no job is waiting (condition) he remains free (action).

A convenient way of describing the interactions among the entities is
through the use of a flowchart. One may use the conventions given below:

Name Symbol Meaning

pare_ l s

-+ 1 operation

box

62

Name

diamond

triangle

drum

triangle

Symbol Meaning

is
server
busy

NO
decision flow

flowchart entry
arrival

L

schedule : schedule a future
next arriva event
event

!
|

return

flowchart exit

Consider a simple queueing system where cars arrive at a service station
with one pump. There are two events here—arrival of a car and departure of a
car, Using then the symbols given above we describe an arrival event and a

departure event,

63

change
states of
entities

arrival

determine
time of
next arrival

\

schedule
next arrival
event

!

create

record/record

arrival time

file record
in queue

future event
generated and
scheduled

put server
in busy

mode
L Change States

\)b\\ of entities
put record

in customer
in service

determine
service
time

future~<¢"‘3"il
generated 2
scheduled

schedule
departure
event

Change
States of
entitieg

departure

compute
total time
in system

v

record
observation

R\

destroy
record

remove
record
from queue

N/

put server
in busy
mode

put record
in customer
in service

return

I /R

determine
service time

schedule

next departure

event

B

change
states of
entities

future
event
generated
and
scheduled

Notice that each event accomplishes two things. iirst, future events are
generated and scheduled. Second, changes on the states of entities are made.

Observe also that time is frozen when an event is executed. It may take

sometime to execute an event from entry to exit but current time remains un-
changed.

Determination of next event time

The generation of further events is a process of three operations as shown
below:

Seed

generate random integer

random integer

transform to random decimal

random decimal

transform to random observation

random observation
distribution

66

A random integer may be generated using the equation
azZi__ +c
Zi=aZi_1+c— | —_ |xm
m

where [*] denotes the largest integer in *.

Zyis referred to as the seed of the generator.
As-an example, leta = 5, ¢ = 0, Zy = 4, and m = 7. Then we have the
following integer generation:

icomputation Z;
0 4
1 20— (20/7)x7 6
2 30—(30/7x7 2
310—10/7)x7 3
4 15— @15/7)x7 1
5 5—(/7) x7 5
6 25 —

[=,)

25 — (25/7)x7 4

Then the number Z; is transformed to U; by

U; = Zi/m
Z; Uj

0.8571
0.2857
0.4286
0.1429
0.7143
0.5714

AV hE WN = O —
H = W NS

Lastly, Uj is transformed to a random observation from a probability dis-
tribution by first getting the cumulative distribution function from the’ pro-
bability density function and then equating this to U;.

67

Suppose that T has the probability density function

! ,a S t<hb
fp(t) = b—a
0 , elsewhere
Then t ds
Fp(t) =
T(f a b—a
t—a
b—a
So we have
ti—a
U; = Fp(t) = !
=P = g
or
T=t=Ujfb—a)+a
List Processing

A substantial part of simulation involves record manipulation. It is there-
fore important to make use of a programming technique known as list pro-
cessing. This technique allows one to manipulate records without physically
moving them in storage. This technique is illustrated below for processing
three types of lists — a first-in-first-out (FIFO) list, a last-in-first-out (LIFO)
list, and a priority list.

A stack of records may be structured as a LIFO list. When a record is
created, the first record in the list is removed from the list. When a record is
destroyed, th

¢ ; € record is returned to the list at the head of the list. Each record
n ‘the list contains the index of the next record on the list. This is called a
pointer. A variable

ot » Called a header, contains the index of the first record in
the list. The last record in the list con

. tains an end of list symbol in its pointer.
If the list is empty the header contains the end of list symbol.
1 record 1 2
record 2 3
record 3 4
. M is a large
: number
o

record n-1 n

M end of list symbol

record n

index of next record

To create a record, the variable current record gets the value in the header,

and the header gets the value of the record addressed to by the header.

record 1 2
head
o record 2 3
4
record 3
E record n-1 n
Current M
record record n

t record gets the value in the

To destroy a record, the pointer of the curren record e ppose before

eader, and the header gets the value in the curr
fecord 5 js destroyed, the stack looks

record
heade
' record 2
record 3
_____.——‘
E record §
Current
Tecord record 6 _,J
/
. 9
record 8 i
10
record 9]

69

record n-1 n

record n M

After destroying record 5, the stack would look

5 record 1
header
record 2
record 3
5 record § 8
current record 6
record
record 8 9
record 9 10

In a FIFO list, it is convenient to have another variable called a tailer that
contains the index of the last record in the list. This makes it easy to add a

record at the end of the list. Suppose record 6 is the last record in the list. The
list would look

4 record 4 5
header record § 6
record 6 M
6
tailer

To add a record at the end of the list, the pointer of the record addressed
to by the tailer gets the value of the current record, the tailer gets the value of

the current record, and the pointer of the current record gets the end of list
symbol.

70

In a priority list, it is convenient to add another pointer in each record.
This points to the previous record in the list.

4 record 4 5 M
header record 5 6 4
record 6 M >

previous record
pointer

To add a record before a specific record in the list, the next record pointer
of the current record gets the index of the specific record. Then the next record
pointer of the record previous to the specific record gets the value of the
current record. Also the previous record pointer of the current record gets the
value of the previous record pointer of the specific record. Lastly, the previous
record pointer of the specific record gets the value of the current record.

Running the Simulation

A simulation program may have a four-level structure—the main pro-
gram, the control program, the event modules, and the support functions such
as generation of random observations, list processing, and computation of
mathematical functions.

The main program performs initialization and determines the number of
simulation runs. The control program provides the timing routine and trans-
fers execution from event to event.

The following diagrams show sample main, control, and an end of simu-
lation event programs.

71

main

N

determine
input
parameters

\

set background
conditions

\

schedule

first
event

A

schedule an
end of simulation
event

perform
simulation

YES

end

72

(execute control)

control

events
list
empty?

select
next
event

remove
record
from events

list

advance
current
time to

event time

execute
event
[

destroy
event

record

L¥ ‘

YES

——

return

73

and of
simulation

prepare
summary
statistics

e

print
summary
statistics

destroy
records
from events lists

References

1. G.S. Fishman, Concepts and Methods in Discrete Event Digital Simulation.
New York: John Wiley and Sons, 1973.

2. G. Gordon, The Application of GPSS V To Discrete System Simulation.
New Jersey: Prentice-Hall, 1975.

3. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research.
San Francisco: Holden-Day, 1980.

. H.G. Daellenback and J.A. George, Introduction to Operations Research
Techniques. Boston: Allyn and Bacon, 1978.

- W.G. Graybeal and U.W. Pooch, Simulation: Principles and Methods.
Cambridge: Winthrop Publishers, 1980.

Data Structures

1. event record

KE NT NE PE

CE = current event record
KE = event code

NT = time of occurrence of event
NE = next event record

PE = previous event record

event code

1 denotes arrival event
2 denotes departure event
3 denotes end of simulation event

2. customer record

CA NC

CC = current customer record
CA = customer arrival time
NC = next customer record

74

3. event records stack

1 2 1
HE
2 3
N-1 N
N 500
KE NT NE PE

HE = head of event records stack

NE (I) = 500 denotes record I is the last record

= initial size of stack
HE = 509 denotes stack is empty

4,
Customer records stack

CA NCR
1 B 2
2 3
. 0
.)
——
N N
N 500

HC

EC = head of customer records stack q
C(I) = 500 denotes record I is the last recor

H = initial size of stack
C =500 denotes stack is empty

75

5. events list

KE NT NE PE
5 1 10 10 500 5
HA
10 1 20 15 S
15 2 25 17 10
17 3 6000 500 15

HA = head of events list

NE (I) = 500 means I is the last record
PE (I) = 500 means I is the first record
HA = 500 means events list is empty

CA = index of record *%:.: comes after a record that is to be inserted

6. customer queue

CA
5 10
6 12
7 20

NC
6 5 7
; HQ TQ
500

HQ = head of customer queue

TQ = tail of customer queue

NC (I) = 500 means record I is the last record
HQ = 500 means the queue is empty

TQ = 500 means the queue is empty

7. server

MODE

MO = denotes status of server

76

MO =1 denotes server is busy
MO = 2 denotes server is idle.

Cs

CS = index of customer record that is in service

8. other variables time

S1 % = seed for interval between arrivals
32 % = seed for service times
Z % = random integer
u = random decimal
T % = random observation
= means of observation
CL(I) = class interval I
LE = time of occurrence of end of simulation event
NN = size of event records stack
M = size of customer records stack
KL = clock
KO = event code _
1 = mean of time intervals between arrivals
2 = mean of service times
A = events list sentinel

. M t
A= means event record to be added at the tail of the lis

. tail of
LA = 2 means event record to be added in location other than the tai
the list
CT = total time in system of a customer
M = the index of current event record

10
% ﬁgm MAIN PROGRAM
30 Rem HE SIMULATION

THIS PROGRAM DEMONSTRATES T

4

50 ﬁgx OF A SINGLE SERVER QUEUEING SYSTEM.

60 VENT

10 ,]:EM THE INPUTS TO THIS PROGRAM ARE SIZE gg lfDS STACK,

EM RECORDS STACK, SIZE OF CUSTOMER;} O ARRIVAL

LENGTH OF SIMULATION RUN, MEAN T8 /' ryis

TIME, AND MEAN SERVICE TIME. TH OVTION OF
PROGRAM IS THE FREQUENCY DISsTnl: THE SYSTEM.

139 REm TOTAL TIME A CUSTOMER SPEND

160 DEM DECLARE ARRAYS AND VARIABLES
INT C,H,1,K,L,M,N,P,T

77

170 DIM KE(100), NT(100), NE(100), PE(100), CA(100), NC(100), CL(11)
180 REM

190 REM INITIALIZE SERVER STATUS, CUSTOMER QUEUE,
200 REM EVENTS LIST, SEEDS, AND CLASS ARRAY

210 MO= 2

220 HQ= 500

230 TQ= 500

240 HA= 500

242 FOR I=1TO 11

243 CL()= 0

244 NEXTI

245 S1% = 159

246 S2% = 283

247 INPUT ““MEAN INTERARRIVAL TIME(£ = 100)’’; M1

248 IF M1 > 100 OR M1< 0 THEN 247

249 INPUT “MEAN SERVICE TIME(< = 70)"*; M2

250 IF M2)70 OR M2 < 0 THEN 249

260 IF M2 > =M1 THEN 249

262 REM

264 REM

264 REM CREATE RECORD STACKS

266 INPUT “SIZE OF EVENT STACK(20 < = SIZE < = 100)”’; NN
270 IF NN > 100 OR NN < 20 THEN 266

280 INPUT “SIZE OF CUSTOMER STACK(20 < = SIZE < = 100)’’; NM
290 IF NM > 100 OR NM <20 THEN 280

300 N= NN

310 GOSUB 2000

320 N= NM

330 GOSUB 3000

340 CLS

350 PRINT “EVENT STACK CREATED. SIZE= "’; NN

360 PRINT ‘“CUSTOMER STACK CREATED. SIZE= *’; NM
370 REM

400 REM SCHEDULE AN ARRIVAL EVENT

410 KL= 0

420 T% =0

430 KO= 1

440 GOSUB 5000

450 CLS

460 PRINT ‘“ARRIVAL EVENT SCHEDULED AT CLOCK TIME = ”’; KL
470 REM

480 REM SCHEDULE AN END OF SIMULATION EVENT

490 INPUT “LENGTH OF RUN(500 { = LENGTH < = 6000)"’; T%
500 IF T% % 6000 OR T% <500 THEN 490

510 KL=0

520 KO= 3

78

530 GOSUB 5000

540 CLS

550 PRINT “END OF SIMULATION EVENT SCHEDULED AT”’
560 PRINT “CLOCK TIME = "*; T%

570 REM

580 REM EXECUTE SIMULATION

590 GOSUB 800

600 END

800 REM SUBROUTINE SIMULATE

810 REM

820 REM THIS SUBROUTINE PERFORMS THE TIMING ROUTINE
830 IF HA = 500 THEN RETURN

832 REM

840 REM GET FIRST RECORD FROM EVENTS LIST

850 CM= HA

860 HA = NE(HA)

862 PE(HA)= 500

870 REM

880 REM UPDATE CLOCK TIME TO EVENT TIME

890 KL =NT(CM)

900 REM

910 REM EXECUTE EVENT

920 ON KE(CM) GOSUB 6000, 7000, 8000

930 REM

940 REM DESTROY EVENT RECORD

942 CE= CM

950 GOSUB 1500

960 GOTO 830

1000 REM SUBROUTINE FOR GENERATING RANDOM DECIMAL
1010 V=2%Z% + 271

1020 Z% = V—(V/10000)* 10000

1030 U =Z%/10000

1040 RETURN

1500 REM SUBROUTINE TO DESTROY RECORD OF EVENT
1510 NE(CE)= HE

1520 HE= CE

1530 NN= NN +1

1540 RETURN

2000 REM SUBROUTINE TO CREATE STACK OF EVENT RECORDS
2010 FOR I=1TO N—1

2020 NE(@)=1+1

2030 NEXTI

2040 NE(N) =500

2050 HE=1

2060 RETURN

3000 REM SUBROUTINE TO CREATE CUSTOMER RECORDS

79

3010 FORI=1TO N—1

3020 NC(I)=1+1

3030 NEXTI

3040 NC(N) =500

3050 HC=1

3060 RETURN

4000 REM SUBROUTINE TO GENERATE RANDOM OBSERVATION
4010 T% = —M*LOG(1-U)

4020 RETURN

4500 REM SUBROUTINE TO CREATE CUSTOMER RECORD
4510 CC= HC

4520 HC = NC(HC)

4530 NM= NM—1

4540 RETURN

80

	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80

