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Abstract

The effect of buoyancy on laminar forced convection in the entrance region
of a uniformly heated horizontal pipe, where the velocity and temperature
fields are developing simultaneously, is investigated for the case of Gr = 5000.
All of the terms of the time-dependent governing equations are taken into
account so that the results obtained can be applied to low Prandtl number
fluids for which the results obtained from large Prandtl number assumptions
are no longer valid. A novel iterative method is developed to solve nonlinear
partial differential equations, and has proven to ensure stability and faster
rate of convergence. The developing primary and secondary velocity profiles,
developing temperature field, and local and average Nusselt numbers are.

presented to clarify the free convection effect. Values are compared with those
obtained from pure forced convection.

Introduction

The importance of buoyancy effects on laminar heat transfer has led to
many theoretical investigations on combined free and forced convection in
horizontal or vertical tubes. For the case of horizontal tubes with uniform
wall temperature, the free convection effect becomes very important only in
the entrance region since the effect disappears as the bulk temperature ap-
proaches the wall temperature in the fully developed region. The equations of
state for this problem are still very difficult to solve analytically so that
numerical analysis using finite-difference techniques are used. Various studies
[1-4] have been published, but with modifications of the governing equations.
In short, numerical analysis to date on combined free and forced laminar
convection in a horizontal tube has been made possible only by using the large
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Prandtl number assumption. Though the results are helpful in the understand-
ing of the problem, they are practical only for large Prandtl number fluids.
Some investigators [3,4] assume hydro-dynamically fully developed velocity
fields, with emphasis only on the thermal entrance region. The results
obtained from this assumption cannot satisfactorily describe the complex heat
transfer phenomena in the entrance region where the velocity and
temperature ficlds are developing simultancously.

This research presents theoretical results of the effect free convection on
laminar forced flow in the entrance region of a horizontal pipe with uniform
wall temperature. A Prandtl number of 0.71 (air) is assumed to represent
fluids for which the above-mentioned large Prandtl number assumption is no
longer valid. For such a relatively small Prandtl number, the inertia terms in
the momentum equations cannot be neglected, and so here all the terms in the
time- dependent governing equations are taken into account. Physical proper-
ties are assumed constant except for the density which is temperature-depen-
dent. Primitive variable (U,P) system is used in contrast to the commonly used
vorticity-stream function (w,p) system. The (w.y) system is not practically
effective to be used in three-dimensional problems. The difticulty lies in the
assumption of appropriate boundary conditions. Ou and Cheng [4] used the
verticity-stream function system, but the assumption that the main flow re-
tained Poiseuille profile, unaffected by the secondary flow, reduced the prob-
lem into a two-dimensional flow wherein the (w,p) system could be used to
its greater advantage.

A novel iterative method is developed in this research to solve nonlinear
partial differential equations. This method has proven to ensure stability and
faster rate of convergence.

The developing primary and secondary velocity profiles, developing
temperature fields, and local and average Nusselt numbers are presented to
clarify the free convection effect.

Governing Equations

Consideration is given to a fluid in laminar forced flow with simul-
taneously developed velocity and thermal fields. The fluid is assumed incom-
Pressible with constant physical properties except for the density which is tem-
Perature dependent and important only in the buoyancy terms of the momen-
tum equations. Viscous dissipation is neglected. The fluid enters the pipe with
4 uniform velocity w and at a uniform temperature t'y. The horizontal, semi-
Infinjte pipe is uniformly heated at a temperature t'y,. The cylindrical coor-

dinate system is shown in Fig. A.
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Fig. A. Cylindrical coordinate system.

The governing equations make use of the continuity, moment.um,. and
energy equations [5]. With reference to the coordinate system shown in Fig. A,
the full, three-dimensional, time-dependent equations are:

Continuity Equation
(N 1 .
a(r'u) + ov + a(r“’/) -0 )
or ¢ ox
Momentum Equations
ou’ ou’ "o ou’' v'2
+u—+ + w -
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(3)

a ’ a ’ ’ !
o g L e
ar or r 0¢ ax
a 1
= - vy (4)
p  Ox
Energy Equation
! ’ ’ ! ’
at o at + Y ot W' at' = kY 2 (5)
ot or’ r 3¢ ax
Here, the Laplacean operator is defined:
9?2 1 o 1 0? 92
2 = +
T or’ * 2 a¢? 9x'?

v = —
or'? r

’

Let any point be a differential distance from the wall at temperature t
and density p. The small differences in temperature and density are given by:

Atl = t'—t(V

Ap = p~—pw
With the coefficient of volumetric expansion f§ given by

g =- dpw/ot’
Pw

and the Boussinesq approximation for Ap given by

= 9Pwy | wehave
at’

Ap = — pyPAt
Consider a point at pressure P, in a fluid at static condition with a uniform
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temperature t, and density py,. The equations for pressure deviations are

given by:

==, 5 o
ab, )

a;— =p, B sing

al’? -0

0X

Now let there be a density gradient Ap which causes a pressure gradient P” on
the point. With P' = P, + P" | the equation for pressure deviation would
then be:

D) S (P, +P")
por p, +0p ar
1 A "
= —a- 2y (L 2
w W or or
n
_ 1 op, _ op @R, 1 3131_
p, or py> or p, Or
and with Eq. (7).
1 P _ 1 oP"
- T cos¢p — v At —_ -
o or g cosp — B g ot cosp + T
Consequently, for the ¢ and x’ directions:
L _o¥ gsing + B g af 1 o (9)
—F = i ; + _
o 3¢ g sing oo T )
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Loert o ap”

poox' p, Ox’

A

he following dimensionless numbers are introduced:

1
Re u Re v w'
7 ! o) ! !
“ 0 -~ \V“ “’()
x" 2 r 2r, W
X = — —— r= — Re =
r Re r 14
O O
Y o !
) — ____l___ 0 = _[_____.[\_V Pr = v
wo/2 t"—t' '
PWo 0 0 K
I3 ’ . !
Bery” (ty —t,) 2w,
Gr = 2 I =
4 Rer,

(10)

With Eqs. (6), (8)-(10), and the above dimensionless numbers. Egs. (2)-(5)

could be written:

Continuity Equation

0 (ru) + ov + d (rw) =0
or 09 X

Momentum Equations

0
u o, B v au W

at or r 09 90X T
Re? 0oP + vy — u 2 _ ov
=75 a VTP : 3¢
— Gr 0 cos¢
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ov v v ov ov uv

+ + +w— + —
at  or  r 2 x 1
Re? 9P 1 0
- _ Re tolp 4 2 M Y (13)
8 9 r r2 93¢ r?
+ Gr 0 sing
Sw o v ow L
ar ar r 9¢ ox
1 0P
2 X -
Energy Equation
a0 a0 v a6 a0 1
—_— + u—— + —_— —_— — 2 15
at or r d¢ v 9x Pr V7o (15
Here,V 2 is the Laplacean operator defined:
2 2
V2 — a_ + _l. L 4+ — az + 4 a

o " rar 2 a2 T R ax

The above equations are in the cylindrical coordinate system, and so, the
centt;:r dsbecomers et;(llx:::nttof s;!llgularity. To solve for the velocities by numerical
methods, we n inite values at the center. A ¢t i iables
is then introduced: ransformation of vari

U=mn,V=rv,W=rw (16)

A transformation is also necessary to make the axial length finite. With c and
m as positive constants,
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X =

1_

1 + (cx)m

1

(17)

With the above transformations, Eqgs.(11)-(15) become:

U 1AV, AW dX _
r ¢ | 0X dX (18)
u ey _ Vv B _ W aUudx U

T or 2 9¢ r aX dx r?
V? r Re? 0P 2 aU
——— — — + 82U = — —
r? 2 4 or r or
2 LAY
- -Sa—r Gr 6 cos¢ (19)
_ll_ aV__ VA ov _ W oV dX Re? 0P (20)
r Or r2 09 T X dx 8 a¢
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uw
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2 oW w
B0 SO T U B
29X dX r or r
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For the pressure field, an elliptic Poisson equation is used to ensure better re-
sults; and is given:

vipo_ 8 |1 U 13V awax

Re? r ot or r d¢ 0X dX )

3 1 2,
+  Gr (cosp o, sing ad))+-l_7(U + V*)

2 ou 1 oU 2 2 ou
- S U—+— (=) — =V —
r or 2 or rt ¢

2 0V oU 2 oU 2 2
+ _ W dX+ 1 aw) dX

r’ ar 3¢ r3 0X dX r (ax (dx

2 oW 9U dX 2 ov 2 oV
+ 2 - A% + U
r* or 90X dx r3 or 4 3¢
1 oV 2?2 -
— & L3 9V W dx (23)
" 0¢ r’ 39X 3¢ dx

F:quation (23) h‘as beer? defived using the continuity and momentum equa-p,
tions. (The detailed derivation is shown in the Appendix.). Equations (19)-(23)

form the .formal governing equations and are solved by iterative methods.
The term in Eq. (23) which contains

aD 10]
— , (D=—— 4+ l_ oV + ow (i)i)
at ar r d¢ oX dx

could easily have been cancelled out using the continuity equation. But be-
cause the Poisson equation is solved iteratively, the truncation error
accumulates. The final result would not only be inaccuracy, but also
nonlinear instability in the momentum equations. The inclusion of D could
eliminate the nonlinear instability, as has been observed in many studies [6].
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Boundary Conditions

The following arc the boundary condition that are necessary for the
given problem.

For The Velocity And Temperature Fields

(i) At the pipe inlet:

u
C]

v = O, w =1 (uniform flow)

1 (uniform entrance temperature)
(ii) At the infinite downstream:
x=0 0<r<I

u=v=0,w = 2(1-r) (fully developed Poiscuille flow)
)

O (bulk temperature = wall temperature)

(iii) At the pipe wall:
0<x=x,r=1
u =v = w = O (noslip condition)

© = O (uniform wall temperature)
(iv) At the vertical plane passing through the horizontal axis:
0<x <oo,0x<r<l,9=0, 7

v = O (symmetry)

The above boundary conditions are transformed according to Egs. (16) and
(17), to fit the governing equations. Hence,

(i) Atthe pipe inlet:



(iii) At the pipe wall:

Lxly, =

0
U=V=W=0,0=0

(iv) Atthe vertical plane passing through the horizontal axis:

0kx%1, o0Lt:s1, ¢=o0
V=20
For The Pressure Field

(i) Atthe pipe inlet:

x=0, okrt]
_eom w1 8=
PTYV T o Y E LT
With the above values, Eq. (12) gives:
® _ 8
or Re? o7 CO%0
Therefore,
b _ 8 |
= Re? r Gr cosp + C (¢) -

At r =0, P=Pr=0=constant,

therefore,
B 8
P—Pl.=0—R—ez r Gr cosg
If we assume P, = 3 Gr , then

Re?

8
P=i—e—2Gr(l—rcos¢)
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, 1 P _ 8 . o
With Eq. (24), % R Gr sing Gr sing is obtained, which is
identical  to that obtained from Eq. (13) with the above boundary values.
There fore, the assumption P_,= _Eiz_ Gr.is valid.

(ii) At the infinite downstream:

x = o O

u=v=0, w=2-r), 6 =0

w _Pw o w_ Pw
0x ox? © 3¢ 0¢?

aP oP oP

— = constant, — = — =0

0x or a¢

When these conditions are applied to Eqgs. (12)-(14),

oP

% = — 16 , hence,

P = — 16x + constant

Let the constant be P* , then,

P =— 16x + P* (25)

With Eqs. (24) and (25), and the transformation in Eq.(17),
(i) At the pipe inlet:

X=0 0&rcs1

p* =P = Re? Gr(1—t cos¢)
(ii) At the infinite downstream:

x=l’ OérLl

P* = constant
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(iii) At the pipe wall:

With these conditions, Eq.(19) would give

U _ oy

8 (26)
Re? © or? or

oF
or

Using Taylor series expansion to approximate the derivatives at the wall,

83U  3U, —4U, + U3 _ —4U, + U,
or B 2B
?U U, —2U, + Uy  —2U, + U
arr B2 B2

Therefore Eq.(26) would give

or Re? B2 2B

Equation (25) shows that the parameter P is infinitely decreasing. Since
numerical analysis requires all the parameters to be finite, a transformation
of P according to Eq.(25) is necessary before the governing equations could be
used. When this transformation is applied, the governing equations would
look just like those of Equations (19)-(23) with P* instead of P, and a constant
(+8) added to Eq.(21). For convenience in the finite-difference forms the

symbol P is used instead of P*. Thus, the final form of the governing equations
would still be those of Equations (19)-(23), plus a constant 8 on the right-

hand side of Eq.(21). L owal]
%/ Z 2 »
B \

-zB—-TnZ A




Finite-Difference Solution

Development of Equations

The governing cquations are divided into three iterative loops, namely,
the pressure loop, the temperature loop, and the velocity Toop. In the pressure
loop, L.q. (23), as iterations are done 1o evaluate convergent pressure values,
the velocities do not change. Hence, ordinary space-centered differencing is
used for the velocity derivatives while Euler’s modified mcthod is used for the
first-order pressure derivatives, and Crank-Nicolson's method is used for the
second-order pressure derivatives. Conscequently, in the velocity loop, Egs.
(19)-(21), pressure derivatives are approximated by space-centered differencing
while Euler's and Crank-Nicolson's methods are used tor the velocities.

To illustrate the entire differencing scheme, an example is presented.

Take for example a nonlinear equation given below. (This model equation
is fictitious and is used only for convenience in the presentation of the
differencing scheme.)

U_ U 38U V. 3V _ W 3U _r Re? 3 1 23Uy
ot r or 2 0¢ r oX 2 4 or 12 0¢?

The finite-difference scheme would then be:

oU oV aU
l. the first-order derivatives * 5.~ ° 'EE ’ X ~ are approximated using

Euler’s modified method ([6] p. 84).
2

or?

2. The second-order derivative is evaluated using Crank-Nicolson’s

method [8].

3. The variables U, V, W are taken as constants whose values are of the
previous time level.
oP
- The first-order derivative —— is evaluated by ordinary space-centered
differencing, because the model equation is for the velocity evaluation
in the velocity loop.
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5. The firts-order derivative _a_l{ is approximated by forward-time differencing.

ol
6. A point SOR (successive over-relaxation) method is then used for the

entire equation [8].

With reference to Fig. C, which is used for convenience in the representation
of node points, the finite-difference equation for the model equation is given:

—
n+1 n Un n+1 n+1] n n
e Ye _“e |l U — Uy U, — Uy
= + ——
AN 4 r 2 2B 2B
L —
n n+1 n+1 n n
_ V_e 1 V¢ —Vg V¢ —Vg
r? 2 209 206¢
- ~ ]
n n+1 + \ |
wh | U _ Un 1 Un+ _ Un
_ e |1 a b 4+ —a b
T 2 2A 2A
| —
n n
_ I Rez P, — Py
2 4 2B
n+1 n+1 n+1
+ 1 1 Uf +2Ue +Ug _
2| 2 N
n n n
Us +2U, ~I-Ug
A¢2
n
Let Cl - e , C2 - _ VeAt ~ _ WeAt _
I’4B 4A¢r2 > »3 T T 1'4A ’ C4 -
T Re?at
2 8B
At
Cs = W , so that Eq. (29) could be written;
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d
X
A
yaN/
7
Fig. C. Three dimensional mesh system
n+1] n n+1 n+1 n d
Ue -U, = C (U, —Uy + U, —U,) +
n+1 n+1 n n
C, (Vf —Vg +Vf_Ud) +
n+1 +1 n n
Cs (U, " —Up  + U, —Up)+Ca (Bg — Pg) +

n+1 n+1 n+1

n n
Cs (U +2U, + U, +2Uc + Ug)
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The above equation could be rewritten:

n+1 1 n+1 n+1 n+l n+1
U = —— | C, (U —U + C, (Vg —V ) +
e (1—2C5) [ 1 ( c d ) 2 (Vi g
n+1 n+1 +1 n+1 n_]
C; (U, —Uy )+ Cs (U + U, )+ d, |

where (30)

n n n n n n n
n n n
+ Cy (P, — Py) + C5(Uf +20U" + UL
. g

The iteratione form of Eq. (30) is written:

p+1 1 } p+1 p p p+1
+1 pt+l n|
C (U — Uy + o (Uf + Uy )+ de

where p stands for the iteration number.

The above procedure s called the Gause-Sieded or unextropolated
Liebmann’s method. The SOR is a modification of the above method,
and is written:

n+1 _ n p
Uo =1U, + QD, (32)
where
pP = 1 C (Up+1_ p Vp_VpH)+
e~ (1-2C5) ' Ve Ug) + G (Vg = ¥y
p p+1 P pt+ 1, _
G (U, — Uy )+ Cs(Up + U, )

_ p n |
(1—-2c) 0L + deJ

The relaxation factor £ is usually greater than 1. When <1, it is
called successive under-relaxation. When © = 1, SOR becomes the
Gauss-Siedel method.
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Iterative Procedure

Because of symmetry, it is sufficient to solve the problem in one-half of
the circular region such as that shown in Fig. A. A 26x27x26 (r,4,X) mesh
system is used.

Procedure in Brief
Briefly the solution consists of the following main steps:
1. Determination of the maximum value of the time step size AT.

2. Determination of the values of the relaxation factor which would give
the fastest rate of convergence for the pressure, velocity, and tempera-
ture solutions.

Iterations for pressure values, until sufficiently convergent.
Iterations for the velocities, until sufficiently convergent.

Iterations for temperature values, until sufficiently convergent.

A

Steps 3 to 5 are repeated until steady-state profiles are obtained.

Procedure in Detail

This research made use of Miyakoda’s method [7], wherein the derivative
boundary condition

] ] oP
pP™t - pP + 2 ax
IJK I1+1JK = or

is incorporated directly into the SOR differencing scheme at interior points
adjacent to the wall, and ordinary SOR for node points more than one node
from the wall. After the convergence criterion is satisfied, the wall values

are computed using Eq. (33) with oP as defined in Eq. (27). In a similar way

for the computation of values at flode points adjacent to the infinite end,
the derivative boundary conditions are incorporated into the SOR scheme.

m —
ap At 07 5 1= O, and because of symmetry, the pressure gradient
ot = O. If this gradient is defined in finite-difference form as

op _ P26,14K ~P2514%
or Ar
then the approximation as the center would then be:

P(26,],K) = P(25,14,K)
_ oD
The term in Eq. (23) which contain the derivative Ye where

ar r 26 X ax could have easily been cancelled out with
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the continuity equation, Eq. (18). But duc to incompatible initial conditions
or of incomplete solution of the Poisson equation, the finite difference
nt+l n
D —D
Ay 4
ducted which retained 5;. Its inclusion in the Poisson equation could
eliminate nonlinear instability in the momentum equations. When steady-

is not eq(;x{a)d to zero. Successful studies [6] had been con-

state conditions shall have been attained, Dn-*-l becomes zero. So, g—? is
included which is evaluated by forward-time differencing. Therefore
n
oD _ D
AN °70
3 T
¢ = — 1r = —_—
2 ¢ 2
p=m
Fig. D

From Fig. A, the velocity at the center is given by the relationship

U¢ =0~ V¢ =T = U¢=7T.To ensure that this relationship is retained in the

finite-difference Solution, a method is introduced. The values of U,.V, and W

at points 20-24 (Fig. D) are first changed into u.v, and w according to Eq.
3m

L .
16). Then the average of the Taylor series expansions for ¢ =0, 5 m, > Is

used to approximate the value at the center:
_ 1
U26 - Z [ (3U24 - 3U22 + uzo») ¢ =0 + 2 (3V24 — 3V22 + V20) ¢

=T 3m
a0 ¢ (3“24—3“22+"20)¢=n]

Then with this value for u at the center, all values of u and v at node points

adjacent to the center are corrected by Taylor series expansion using points
23,24, and 26. With reference to Figs. A and D:

u(25,J,K) = 51 |:u(26,l,K) (cosg) +3u (24,J.,K) —u (23,J,K)]

v(25J.K) = _1_ —u(26,1,K) (sing) + 3v (24,J K) —v (23,J,K)]
bl } 3
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This method of approximating the velocities at the center and the subsequent
corrections for the node points adjacent to the center has been found to give
more stable results.

Approximation for the values of temperature at the center is done by
taking the average of the Taylor series expansions for$ = O, and $ = n. With
reference to Fig. D:

1 _ -
026 = 3 E3925 ~ 3094 + 093) =0 + (B0g5 ~ 3094 + O93) ¢ = ’f}

With the above approximations and SOR differencing scheme for the
governing equations, the maximum value for the time-step size At is
determined. Trial computations are made with the relaxation factor Q = 1
for the pressure, velocity, and temperature equations. After a careful study
of the behavior of the results, the time-step size is fixed. With this value for At,
trial computations are made to determine the maximum values of Q which
would give the fastest rate of convergence for the pressure, velocity, and tem-
perature solutions.

With initial values obtained from laminar pure forced convection,
pressure values are evaluated until the convergence criterion is satisfied.
With the new values of P, the velocities are computed until convergent. The
temperatures are then solved, and when convergent, the computations would
continue with the next time level. The computations end when the desired
number of time-iterations shall have been reached.

Local and average Nusselt numbers are obtained by:

e 2 726
Average: Nu = — — ~ do
™oy, l or =1
w0 dA

: - 2 98 = VA
Local: Nu 6y or .1 where 0y j w dA
The convergence criterion is given by: A

+1
max. Xp — Xp
< €
p+l

Mmax. IX

Where X stands for the parameters U,V,W,P, and Temp., as the case may be.
€ = 0.001 for the pressue.

€ = 0.00001 for the velocities and temperature.
Other assumed values are:

Re = 100, Gr = 5000, Pr = 0.71 (air)
For Eq. (17):
¢ =30, m =0.95
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Results and Discussion

Accuracy and Convergence
The “p” Loop

The governing equations contain nonlinear terms so that existing sta-
bility analyses to compute for the time-step size could not be applied. Trial
computations were then used. A time-step size of At = 0.0001 was found to
be the maximum value with which the whole finite-differencing scheme was
stable. The pressure equation determined this restrictive stability requirement.
With this value for A, the relaxation factor Q for the pressure, velocity, and
temperature equations were determined. A value of = 1.86 for the
pressure, and Q = 1.0 for the velocity and temperature equations, were found
to give the fastest rate of convergence. The convergence criterion € = 0.001
for the pressure, and € = 0.00001 for the velocities and temperature, were
satisfied for every time step after about twelve iterations for the temperature,
fourteen for the velocities, and forty-thiee for the pressure. A faster rate of
convergence of the pressure values was achieved (about four times faster)
when ordinary centered-space differencing was used for the pressure deriva-
tives in the pressure loop instead of Euler’s and Grank-Nicolson’s methods.

The Time Loop

After two-hundred sixty time-iterations, the solution was believed to
have attained steady-state convergence. The rate of convergence is illustrated
in the Appendix, with time-iterations 40, 80, 140, 200, and 260.

Velocity Field Characteristics

Although the determination of the local and average Nusselt numbers
is of primary importance in many industrial applications, the growth and
decay of the secondary flow and its effect on the developing main flow are also
9f great engineering importance. To study the effect of the secondary flow, it
is necessary to make a comparison of results obtained in this research with
those of pure forced convection.

The developing velocity profiles for pure forced convection are shown in
Figs. 1 and 2, while those obtained here are shown in Figs. 3, 4, and 5. The
velocity profiles are illustrated using axial location as parameter; and for con-
venience in the discussion, letters are used. .

Comparison of the velocity profiles marked A in Figs. 1 and 3 reveals that
the value of the axial velocity w in the central region are larger for the
combined flow. With the same axial location A, a comparison of the profiles
for the velocity component u, shown in Figs. 2 and 4, reveals that the values
for the combined flow are smaller. The theory of conservation of mass and
momentum then suggests that the gain in the axial velocity of the combined
flow (relative to the axial velocity of pure forced flow) is a response to the
loss in the transverse velocity. To study the relationship, the velocity profiles at
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the downstrecam location marked B are presented for analysis. Comparison of
values at the central region shows that the axial velocity decreased. and the
secondary velocity component u increased, relative to those of pure forced
flow. A careful study of the velocity profiles at other axial locations also indi-
cate the same relationship between axial velocity and secondary flow. Fur-
ther insight into the understanding of the effect of free convection could be
obtained from flow visualizations shown in Figs. 6-9. Secondary velocity
vectors are plotted for the four axial locations A, B, D, E. Figure 6 shows the
birth of the secondary flow. It gradually develops downstream as the warmer
fluid near the wall moves upward and the cooler fluid at the core moves
downward, as shown in Fig. 7. It attains its maximum intensity at the axial
location D, Fig. 8, and then gradually decreases as the fluid moves further
downstream, Fig. 9. The movement of the eye of the vortex is also of interest.
It starts from the lower region and moves upward with some movement to-
ward the center. The upward movement is corrclated to the upward
movement of the peak points of the axial velocity as observed in Fig. 3b. The
movement toward the center is correlated to the horizontal movement (to-
ward the center) of the peak point of the axial velocity, as can be observed in
Fig. 3a. It is of interest to note that the eye of the secondary flow is the region
where the intensity is minimum. The above observations support the hypo-
thesis that the secondary flow affects the main flow in an inverse relationship.

1.0

=0

1.0 . 1

FIG. 1. fDevelopment of axial velocity profiles along the vertical center line
or Gr=0.
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FIG. 2. Development of velocity profiles of the velocity component u along
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FIG. 6. Secondary velocity vector flow pattern at the axial location
x = 0.00118.
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FIG. 7. Secondary velocity vector flow pattern at the axial location
x = 0.0123.
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FIG. 8. Secondary velocity vector flow pattern at the axial location

x = 0.0611.
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FIG. 9. Secondary velocity vector flow pattern at the axial location
x = 0.191.
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TEMPERATURE FIELD AND NUSSELT NUMBER

The temperature profile is of interest in the study of the local Nusselt
number behavior. It can be seen from Fig. 11 that the normal temperature
gradients are greater in the lower region than in the upper region of the pipe.
(The developing temperature profiles for pure forced flow is shown in Fig. 10
for reference). This is expected because in the upper region the warmer fluid
near the wall is constantly transported upward, while on the other hand,
near the bottom of the pipe, the cooler fluid in the core region is continually
transported downward. Consequently, the local Nusselt numbers are smaller
in the upper region and larger in the lower region. The variations of the local
Nusselt number are shown in Figs. 13 and 14. A “dip” in the curves for B, D,
and E near ¢ =7 is observed in Fig. 14. This could perhaps be due to some
form of “stagnation” caused by the interaction of the downward flow from the
core region and the rising fluid from the bottom part of the wall. Further
study is deemed necessary to clarify this matter.

Some insight may be gained by contrasting the velocity profiles shown
in Figs. 4 and 5 with the local Nusselt number variations in Figs. 13 and 14.
At the axial location D, the intensity of the secondary flow is at its peak. This
same axial location (x = 0.0611) corresponds to where the maximum variations
of the local Nusselt number occur.

Higher average Nusselt number values are obtained in this research as
compared with those obtained from pure forced convection. The comparison
is shown in Fig. 12. The thermal entrance length for the combined flow is
longer than that of pure forced convection by about 1.35 pipe diameters. This
result was obtained with the assumption that the entry length extends up to the
point where the value of the average Nusselt number has come one per cent
close to the value at infinity ( ). Significant variations (2 per cent
minimum) of the local Nusselt numbers are observed as far as 17.5 pipe
diameters. It is interesting to note (Figs. 13 and 14) that the average Nusselt
numbers are almost identical with the local Nusselt numbers at ¢ =
(maximum difference of about 2.5 per cent).

The limiting value of Nu® = 3.66 is approached asymptotically.
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FIG. 12. Average Nusselt number values for Gr =0 and Gr = 5000
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SUMMARY AND CONCLUSION

A novel iterative finite-differencing scheme has been developed to solve
nonlinear partial differential equations. It has been found stable and faster
rate of convergence has been achieved.

The secondary flow not only distors the parabolic development of the
axial flow, but also considerably increases the thermal entrance length.

Significant variations of the local Nusselt numbers are observed as far as
17.5 pipe diameters, and the average values are higher compared with those
obtained from pure forced convection. The limiting value of Nu® = 3.66 is
approached asymptotically.

A direct comparison of the present results with those of other investiga-
tions [2-4] is not possible due to the major difference in the assumptions.

The present problem is one of the basic convective heat-transfer problems,
and the results obtained are helpful in the understanding of the complex
phenomena which occur when the velocity and temperature fields are
developing simultaneously. Furthermore, the results are applicable to low
Prandtl number fluids for which the results obtained from large Prandtl
number assumptions are no longer valid.
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NOMENCLATURE

Symbol

ar

Description

Specific heat

Accelcration duc to gravity
Pressure

Radial distance from the pipe center
Inside radius of the pipe

Fluid temperature

Fluid temperature at the pipe inlet
Wall temperature

Radial velocity component
Tangental velocity component
Axial velocity component

Fluid velocity at the pipe inlet
Axial coordinate

Heat transfer coefficient
Coefficient of volumetric expansion
Thermal conductivity, (Mg Cp)

Heat transfer coefficient for conduction

Kinematic viscosity

Density
Fluid density at the wall

Angle measured clockwise from the upper
vertical centerline; radians

Time
Time increment
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Dimenssionless

numbers

Q Relaxation facor for the pressure, velocity,
or temperature SOR differences scheme

A Axial increment in the finite-difference
approximation

B Radial increment in the finite-difference
approximation

c Constant in Eq. (17)

Gr Grashof number, (Bgr;? (t\;v—t(')) /v?)

m Constant in Eq. (17)

Nu Nusselt number, (2r(')a/'}\)

P Pressure

Pr " Prandtl number, (¥/k)

Re Reynolds number, (2r(')w(', V)

r Radius, (r'/ ro)

u Radial velocity component, (Reu’ /2w )

\4 Tangental velocity component, (Rev'/2w('))

w Axial velocity component, (w'/wc'))

U,V,M, Transformationsof u,v,w from Eq. (16)

X Axial coordinate, (2x'/r(') Re)

X Transformation of x from Eq. (17)

0 Temperature, (t’—tv'v)/ (t(')—tv'v)

Gb Bulk temperature, ( wfdA / wdA)

A Angular increment in the finite-difference
approximation

At Time increment in the finite-difference
approximation
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Subscripts

a,b,c, Node points used in the presentation of the
d,e,f,g finite-difference scheme, Fig. C

Superscripts
n Time-loop iteration number
p Pressure, velocity, or temperature-loop

iteration number

— Average
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