LPL : A PROBLEM ORIENTED LANGUAGE
FOR LINEAR PROGRAMMING

By

EVANGEL P. Quiwa *

Introduction

Linear programming is a mathematical technique used to determine
the optimal allocation of limited resources, such as men, money, mate-
rials and machines to satisfy a given objective, e.g., minimize cost or.
maximize profit. In the last decade since the general linear programming
(LP) problem was formulated and the simplex method developed for
its solution, linear programming has become an indispensable tool in
solving certain optimization problems in such diverse fields as economics,
military operations and engineering.

The simplex algorithm for solving the LP problem is essentially a
simple method. One who knows how to add, subtract, multiply and
divide can readily apply the procedure. Of course, to understand why
the procedure works requires more than just a knowledge of arithmetic.
In any case, the large amount of repetitive calculations needed to solve
a typical LP problem makes it impractical (and for really large problems,
impossible) to carry out the computations by hand. A digital computer,
not a human person, is better suited to perform this kind of tedious
chore. However, a computer must first be instructed in the ways of
linear programming.

Described herein is a program package called LPL, acronym for
linear Programming Language, which is designed specifically to solve
the LP problem. LPL is currently implemented on the IBM/360-256K
system of the U.P. Computer Center and is available for general use.
Some of the salient features of LPL are:

1. LPL accepts the LP problem in “raw” form, i.e., as formulated.
Slack, surplus and artificial variables are automatically provided as
needed.

*Associate Professor, Engineering Sciences Department, University of the
Philippines.

240

2. Input of commands and numerical data is free-field. The user,
however, may input the activity matrix (which constitute the bulk of
the numerical data) in either free-field or fixed-field fashion.

3. The user may choose between two implementations of the
simplex algorithm: the big-M method and the two-phase method.

4. The user can obtain an iteration by iteration printout of all
computational results in tableau form, or an iteration log only, or both.

5. The user can readily modify the original input data and solve
the problem anew.

6. The user can solve the dual problem, subject only to the restric-
tion that there are no equation-type primal constraints.

7. The user can perform a sensitivity analysis on the objective
function coefficients and the right-hand-side values.

These features of LPL make it highly suitable for instructional use.

In the next two sections of this paper, LPL will be described from
two points of view: firstly, LPL as a language — its alphabet, statements,
program structure, error messages and the like; and, secondly, LPL as
an interpretive system — its provisions for command interpretation and
the free-field input of both numeric and non-numeric data.

LPL : Its Features as a Language

The format of LPL statements and the structure of LPL programs
are closely related to the form of the LP problem. It is therefore in-
structive to review at this point the general linear programming problem
and some LP terminology. Mathematically, the LP problem may be de-
fined as follows:

Optimize the objective function

n
Z = % CiXj @
i=1
Subject to the constraints
n
p) ajjXj 2 b i=1,2, ..m)
i=1 <

241

and the non-negativity restrictions

xj > 0 j=12,...n (3)

The quantities x;,j = 1,2, . . . ,n, are called structural variables; the coef-
ficients ¢; of the xj in the objective function will be referred to as

“prices”. The quantities ajj,j = 1,2, . . . ,n; 1 = 1,2, .. .,m, are called
activity or technological coefficients, while the bj, i= 1,2, ... ,m, are
called resource coefficients or, simply, RHS values. The values of all the
cj, ajj and bj are assumed to be known.

Any set of xj which satisfies the constraints (2) is a solution to the
LP problem. Any solution which satisfies the non-negativity restrictions
(8) is called a feasible solution. Any feasible solution which optimizes
the objective function (1) is called an optimal feasible solution.

Consider now a specific linear programming problem (a student

project in ES 240, now CE 218, Operations Research in Water Re-
sources):

Maximize V=5148%,, + 25.92x,, + 46.66x,, + 21.60x,,
+ 41.47 X34 + 19.44 X39 + 60.48 X4 + 30.24 Xa2
+ 65.66 X5 + 36.72 Xs2 + 69.12 X6 1 + 43.20 X62

Subject to
AQSL: x4, + X, < 2100
ASFCL: x,, + X,, < 405
ASFC: X3, + Xa, < 80
ALPS: x4, + Xi, < 1715
ALDFS: x5, + X5 < 500
AACS: x¢, + Xg, < 200
MAC: x;, + X3, + X3, + X4, + X5,
+ Xg9 > 500
AWC: 3OX11 + 12X12 + 27x:1 + 10X22 + 24X31
+ 9x;, + 3bx4;, + 1l4x,, + 38x5,
+ 17xs, + 40x¢, + 20x4, < 120000
MIPC: 9x11 + Xp4 + X3 + Xa, + x5, +
X61)
+6(X12 + X,2 + X3, + X4, + X5, +
Xg2 < 40000

242

MBC: 40(x11 + X2 + X3 + Xa1 + Xs1 + xﬁl
X61
+22.5 (XI2 + x22 + X32 + X42 "' x$2 + x62)
< 129000

The following LPL program will solve this (primal) problem and also its
dual. In addition, a sensitivity analysis will be performed on the objec-
tive function coefficients and RHS values for both the primal and dual
problems.

TASKNAME FSDC PUMP IRRIGATION PROJECT (STUDENT PROJECT IN
IN ES 240)

VARIABLES x11(51.48)x12(25.92) x21(46.66) x22(21.60) x31(41.47)

*x32(19.44) x41(60.48) x42(30.24) x51(65.66) x52(36.72)

*61(69.12) x62(43.20)

FORMAT FREE MATRIX

CONSTRAINTS AQSL < 2100 ASFCL < 405 ASFC< 80 ALPSX 716 X 715
*ALPS < 500 AACS < 200 MAC < 500 AWC < 120000 MIPC

< 40000
*MBC < 129000

o
o
o o

AdhHOOHOO
[N e NN

[
OO0 O0OO0OOH+HO

et
DOHOOOO-=O

o
OCOoOO0OO0OOCOCOOoOH

[y
ANMNHOOOOO MR

N
O OOOCOOHOO

[P
OCONOOOKRrROO

fuy

[
OWwWoOOoOH+HOO

-
ONHOHROOOO

S

HCOYWHOOOHROO
©CoOoOOoOHO

DN
S@OI—')—'OOOOO
94

40 225 40 225 40 22.5 40 225 40 22,5 40

PRINTFORMAT

ECHOPRINT PRIMAL
TABLEAUX FIRST, LAST*
SUMMARY

RANGES ALL

METHOD TWO-PHASE
MAXIMIZE PRIMAL VOLUME

SOLVE THE DUAL PROBLEM

RENAME DUAL PROBLEM: FSDC PUMP IRRIGATION PROJECT
ECHOPRINT DUAL

TABLEAUX LAST

MINIMIZE DUAL VOLUME

TASKEND

STOPRUN

243

With this sample LPL program as a point of departure, we will now
look at LPL as a language.

A sequence of LPL statements, starting with the TASKNAME
statement and ending with the TASKEND statement is an LPL task,
and is the equivalent of a given LP problem. The TASKNAME and
TASKEND statements constitute the task-definition statements of LPL.
Immediately following the TASKNAME statement are the data-defini-
tion statements, namely, VARIABLES, FORMAT and CONSTRAINTS
statements. Through these three statements, the user specifies the
numerical data of the LP problem he desires to solve and also the names
he wishes to assign to the variables and constraints of the problem.

The next six statements in the sample program belong to the class
of statements called specification statements. These statements allow
the user to specify additional information which does not pertain to the
LP problem as such, but which is needed nevertheless by the processing
programs of LPL. For example, the user specifies through the PRINT-
FORMAT statement the format code to be used in printing the input
problem data (if ECHOPRINT is coded) and the computational results.
Printing of intermediate and final results in tableau form is controlled
through the TABLEAUX statement. Which implementation of the sim-
plex algorithm (big-M or two-phase) is to be used in solving the LP pro-
blem is specified via the METHOD statement. Finally, the RANGES
statement instructs the system to perform a sensitivity analysis on the
objective function coefficients and RHS values.

The logically last statement in a task is the MAXIMIZE or MINIMIZE
statement. With this statement in the program, the specification of the
LP problem to be solved is complete. Actually, more than one MAXI-
MIZE or MINIMIZE statement may appear in a single LPL task. In this
case, each such statement logically terminates a subtask. In the
sample LPL program shown above, the subtask consists in solving the
dual problem.

In some cases, it may be desired to delete some variables and/or
constraints from the original data as defined by the data-definition
statements, or to modify certain numerical values, and then solve the
problem anew. Such modification of the input data is accomplished by
means of the data-modification statements DELETE, MoDIFY and
SCALEFACTOR. Application of the simplex algorithm on.the modified
data also constitutes a subtask.

A sequence of LPL tasks is called a run. A run may consist of any
number of tasks. Since a task is the equivalent of an LP problem, this
means that any number of LP problems may be solved in one LPL run.
A run is terminated by the STOPRUN statement.

244

These concepts and definitions are illustrated in Fig. 1.

(I‘ASKNAME ...

Data-definition statements

[More LPL statements] } a subtask a task
MAXIMIZE (or MINIMIZE) . . .

[More LPL statements] another subtask

MAXIMIZE (or MINIMIZE) . . . _f (there could be more)

TASKEND

TASKNAME. ..

Data-definition statements

[More LPL statements] ??hoéiezotﬂfg
MAXIMIZE (or MINIMIZE) be more)
TASKEND

@TOPRUN

N

a run

Fig. 1. LPL program structure and related terms

The foregoing paragraphs described the general structure of an LPL
program and its relation to the LP problem. In the remainder of this
section, the different LPL statements which comprise an LPL program
will be described in greater detail under the categories already men-
tioned.

LPL statements are constructed using characters from the following
character set:

(1) Alphabetic and national characters: A,B,,Z, P, #

(2) Numeric characters: 1,2, .. .,9,0

(8) Special characters: +-/*.,=:< > () and the blank charac-
ter.

In addition, LLPL labels and comments may contain such other special
characters as “ ? —;’ etc.

LPL statements normally consist of two parts: a control word (or
keyword) which identifies the statement to both the user and the LPL
interpreter; and a specification list which contains the information to
be processed by the appropriate processing routine. This format is illus-
trated in Fig. 2 (the outline of an 80-column card where LPL statements
are punched is also shown).

(control word specification list

Fig. 2. General format of LPL statements

245

A. The task-definition statements

1. The TASKNAME statement

a.

The general form of the TASKNAME statement is

(TASI{N AME label

where label is any string of characters. label is printed on
every page of the output.

The primary function of the TASKNAME statement is to
indicate the start of a task. Additionally, it allows the user
to specify through lebel the heading that he wants to be
printed on every output page.

2. The TASKEND statement

a.

The general form of the TASKEND statement is

| TASKEND

b. The TASKEND statement indicates the (physical) end of a

task.

B. The data-definition statements

1. The VARIABLES statement

a.

The general form of the VARIABLES statement is

(VARIABLES vname (xxx), ...

where vname is an LPL name, i.e., a sequence of at most six
alphameric characters, the first alphabetic xxx is a constant.

(and) are required delimiters
.. . indicates repetition of the same form

The VARIABLES statement identifies to the system (i.e., the
processing programs of LPL) the names of the structural
variables in the LP problem and their coefficients in the ob-
jective function equation (Eq. 1).

246

The specification list of the VARIABLES statement may be
continued on as many cards as are necessary, in which case
every continuation card must have an * in column 1.

The VARIABLES statement must immediately follow the
TASKNAME statement. It may not appear more than once in
a task.

2. The FORMAT statement

a.

The general form of the FORMAT statement is

FORMAT FREE ATRD(
FD{ED LIST

where the braces indicate choice.

The FORMAT statement indicates to the system the manner
in which the activity matrix (aj;) will be inputted following
the CONSTRAINTS statement.

If FREE is specified, then input of the data is freefield. If
FIXED is specified, then data input will be under the control
of a user-specified FORTRAN FORMAT statement.

If MATRIX is specified, then the full activity matrix, includ-
ing zero values, must be inputted rowwise. If LIST is speci-
fied, then only the non-zero values need be inputted; how-
ever, each such value must be qualified by the appropriate
constant and variable names.

3. The CONSTRAINTS statement

a.

The general form of the CONSTRAINTS statement is
CONSTRAINTS cname sign xxx
where cname is an LPL name
signis<,= or>
XXX is a constant

. indicate repetition of the same form

247

b.

The CONSTRAINTS statement indicates to the system, for
each constraint in the problem, the name given to the con-
straint, the sign and the RHS value for the constraint.

The specification list of the CONSTRAINTS statement may
be continued on as many cards as are necessary in which
case every continuation card must have an * in column 1.

The CONSTRAINTS statement is immediately followed by

the activity matrix (ajj) in the form specified by the
FORMAT statement.

C. The data-modification statements

1. The DELETE statement

a.

The general form of the DELETE statement is

DELETE name, }
NO

where name is the name of a variable or constraint, as spe-
cified by the VARIABLES or CONSTRAINT statement

The DELETE statement causes the variables and/or con-
straints named in the specification list to be deleted from

the original set of variables and/or constraints as defined by
the data-definition statements.

The DELETE statement always operates on the original set
of variables and/or constraints. Once invoked, it remains in
effect throughout subsequent subtasks, if any, until super-
seded by another DELETE statement. The statement DE-
LETE NO restores the original set of variables and constraints.

2. The MODIFY statement

a.

The general for of the MODIFY statement is

MODIFY list 1/list 2/list 3
NO

where list 1 is of the form vname (xxx), . . .
list 2 is of the form cname sign (xxx), . . .
list 3 is of the form cname vname (xxx), . . .

248

b. Depending on which type of list appears in the specification

list of the MODIFY statement, prices, signs, RHS values and/
or activity coefficients may be modified.

The MODIFY statement always operates on the original data
as defined by the data-definition statements. Once invoked,
it remains in effect throughout subsequent subtasks, if any,
until superceded by another MODIFY statement. The state-
ment MODIFY NO restores the original data.

3. The SCALEFACTOR statement

a.

The general form of the SCALEFACTOR statement is

KSCALEFACTOR XXX

where xxx is a positive, non-zero constant

b. The SCALEFACTOR statement multiplies all RHS values by

XXX.

D. The specification statements

1. The ECHOPRINT statement

a.

b.

The general form of the ECHOPRINT statement is

PRIMAL
ECHOPRINT DUAL

NO

The ECHOPRINT statement produces a printout of the in-
put data in two separate sections: the objective function

section and the constraints section.

If PRIMAL is specified, then the data as defined by the data-
definition statements will be printed. If DUAL is specified,
the corresponding dual problem will be generated (subject
to the restriction that there be no equation-type primal con-

straints) and then printed.

The ECHOPRINT statement is optional; the default condition
is no printout of the input data.

249

2. The PRINTFORMAT statement

a. The general form of the PRINTFORMAT statement is

PRINTFORMAT {F}
E

b. The PRINTFORMAT statement allows the user to choose
between the F and E format codes in the printing of all
numerical values.

c. The PRINTFORMAT statement is optional; the default op-
tion is the E format code.

3. The METHOD statement

a. The general form of the METHOD statement is

BIG-M
METHOD
TWO-PHASE

b. The METHOD statement gives the user a choice between two

implementations of the simplex algorithm: the big-M or the
two-phase method.

c. The METHOD statement is optional; the default option is the
two-phase method.

4, The TABLEAUX statement

a. The general form of the TABLEAUX statement is

FIRST
LAST
TABLEAUX = FIRST, LAST [*]
ALL
NO

b. Computational results may be printed in tableau form.
Every iteration of the simplex algorithm results in a new

250

tableau, which the user may or may not wish to be printed.
The keywords within the braces are the options allowed the
user; e.g., FIRST means ‘“‘print the first tableau only”, and so

on.

c. The * is optional. It is meaningful only if TWO-PHASE is spe-
cified by the METHOD statement. In this case, if * is coded,
then the corresponding first phase tableaux (first, last, etc.)
will also be printed; otherwise, only second phase tableaux

will be printed.

d. The TABLEAUX statement is optional; the default option is
no printout of any tableaux.

5. The SUMMARY statement

a. The general form of the SUMMARY statement is

(SUMMARY [NO]

b. The SUMMARY statement produces an iteration log. Speci-
fically, it prints, for every iteration of the simplex algorithm,
the names of the outgoing and incoming vectors, the zj - Cj
for the incoming vector and the functional value.

c. The SUMMARY statement is optional; the default option is
no printout of iteration log.

6. The ITERATIONS statement

a. The general form of the ITERATIONS statement is

rITERATIONS XXX

where xxx is a non-negative integer constant

b. The ITERATIONS statement allows the user to specify an
upper limit on the number of iterations of the simplex
method to be performed. (It is pertinent to state at this
point that LPL user Charne’s perturbation technique to
prevent cycling in case of degeneracy; hence, the user need
not fear that the iterations will never cease due to cycling.)

c. The ITERATIONS statement is optional; the default option
is : perform as many iterations as needed until unbounded-

251

ness or infeasibility is detected, or an optimal feasible solu
tion is obtained.

7. The RANGES statement

a. The general form of the RANGES statement is

ALL
RANGES selection list
NO

.., |Basic OFC ,
where selection list = | yoNBASIC RHS [*]

The RANGES statement allows the user to perform a sensi-
tivity analysis on an optimal solution. Specifically, he can
determine the range over which a given objective function
coefficient or right-hand-side coefficient may be varied,

while holding all other values constant, before the current
optimal basis changes.

The RANGES statement is optional; the default option is no
sensitivity analysis performed on OFC and RHS.

8. The RENAME statement

a. The general form of the RENAME statement is

(REN AME label

The RENAME statement allows the user to change the
TASKNAME — specified label, which is printed as heading

on every output page, with the label declared in the
RENAME statement.

E. The MAXIMIZE or MINIMIZE Statement

a. The MAXIMIZE or MINIMIZE statement is alone in its class.

Its general form is

MAXIMIZE PRIMAL
MINIMIZE DUAL [ofn]

252

where ofn is any string of at most 12 alphameric characters. The
special characters + - . may also be used. ofn is the name given
to the objective function.

b. The MAXIMIZE or MINIMIZE statement is the logically last state-
ment in a task or subtask.

c. If PRIMAL is specified, the primal problem, as defined by the
data-definition statements, will be solved. If DUAL is specified,
then the dual problem is generated and solved, subject however
to the restriction that there be no equation-type primal con-

straints.
F. The run statements

1. The NOLIST statement
a. The general form of the NOLIST statement is

I NOLIST

b. LPL automatically produces a listing of the source state-
ments. If for some reason the user wants to suppress this
listing, then he should code.

NOLIST
TASKNAME. ..
More LPL statements
TASKEND
STOPRUN

9. The STOPRUN statement

a. The general form of the STOPRUN statement is

I STOPRUN

b. The STOPRUN statement is the physically last statement in
an LPL program. It terminates an LPL run, which may con-

sist of one or more LPL tasks.

3. The : comment statement

a. The general form of the : comment statement is

l : comment

253

where the colon must be in column 1 of the card and
comment is any string of characters.

b. The folldwing example illustrates the use of this statement
(only control words are shown)

THIS IS A SAMPLE LPL PROGRAM
TASKNAME. . .
More LPL statements
MAXIMIZE. . .
MODIFY THE PROBLEM DATA AND SOLVE A NEW
MODIFY . ..
MAXIMIZE . ..
TASKEND
STOPRUN

After this brief description of the various LPL statements, a question
that naturally arises is : What happens if a statement is not correctly
coded? Well LPL will issue an error message. Actually, the LPL inter-
preter issues two types of error messages — warnings and diagnostics.
Consider, for example, the following LPL program.

TASKNAME
VARIABLES VI (10.75), V2 (12.65), V3 (-11.14)
FORMAT FREE LIST #€*;!
CONSTRAINTS cl1 < 20.65, ¢2/10.00
(more LPL statements)
TASKEND

The first and second statements are correctly coded. The FORMAT
statement, on the other hand, contains superfluous information after
the keyword LIST. Since the correct information would already have
been extracted before the #€*;! is encountered the LPL interpreter
simply issues a warning of the form.

***** CARD IMAGE FORMAT FREE LIST #€*:!

*xAEXXXWARNING CARD CONTAINS SUPERFLUOUS
INFORMATION AT OR TO THE
RIGHT OF COLUMN xxx

and proceeds to interpret the CONSTRAINTS statement. However, since
sign in the specification list of the CONSTRAINTS statement is < or = >,
the / following c2 cannot be properly interpreted. In this case, LPL
issues a diagnostic of the form.

254

E)

***¥*x*CARD IMAGE CONSTRAINTS cl < 20.66, ¢2/10.00
***¥*x*DIAGNOSTIC INVALID FIELD AT OR TO THE
RIGHT OF COLUMN xxx

and the task is aborted. The next task, if any, is then processed. Other-
wise the run is terminated.

In addition to errors in syntax, LPL also detects logical errors. For
example, if the statement

DELETE vl1,v2,v3

is coded into the sample program above, then LPL will print the message

#x**x*CARD IMAGE DELETE v1, v2, v3

***** DIAGNOSTIC THE * DELETE * STATEMENT
MAY NOT DELETE ALL THE
VARIABLES

upon encountering this statement, and the task is terminated.

A description of all the error messages issued by LPL will be too
lengthy to include here. It should suffice to state of this point that, as
a general rule, the image of the card in error, or the TASKNAME or
RENAME label, is printed along with the message. This makes debugging
relatively easy.

LPL: Its Features as an Interpretive System

LPL, as an interpretive system, consists of 50 FORTRAN subprograms
and 12 assembler routines operating under a FORTRAN control pro-
gram. Seven of the 12 assembler routines are generated by two macro-
instructions of an executive system generator called STAPLES*. The
important tasks of command decoding and extraction of numeric and
non-numeric data inputted in free-field fashion are done with relative
ease through FORTRAN explicit and implicit calls to these STAPLES-
generated modules. The STAPLES macroinstructions which LPL utilize
are:

(1) Macroinstructions CMD — generates tables of keywords and
entry point addresses to processing programs

*STAPLES (Structured Adaptation of Problem-Oriented Languages for En-
gineering Systems) was developed by Dr. Salvador F. Reyes of the Department of
Civil Engineering, College of Engineering, U.P. It is currently implemented on the
IBM/360-256 system of the U.P. Computer Center.

255

Extract first

field of next
statement
@)
Extract
Valid I YES Remaining fields
control words J (specification
list)
Flush rest of
statement YES 14
untii TASK END g Error
is encountered
3
Execute
command

FIG. 3

FLOW DIAGRAM OF STATEMENT INTERPRETATION

256

(2) Macroinstruction PRV — generates subprograms for perform-
ing miscellaneous tasks not readily accomplished by FORTRAN coding,
e.g., referencing a FORTRAN variable by its address

It will be recalled that an LPL program consists of a sequence of
statements punched on 80-clumn cards. Most of these statements are
completely contained in a single card, while others may be continued
onto the next and succeeding cards. In any case, LPL sequentially pro-
cesses these statements, i.e., it reads, decodes and executes the state-
ments as they are encountered. Figure 3 below illustrates by means of a
flow diagram the mechanics of interpreting LPL statements. For refer-
ence, the boxes are numbered (1) through (4).

In the previous section, it was mentioned that LPL statements, in
general, consists of two parts: a control word and a specification list
(see Fig. 2). In box (1), Fig. 3, the first field containing the control
word is extracted by the LPL interpreter (a FORTRAN program) and
stored in a working vector. This is then passed to the assembler routine
generated by macroinstruction CMD, which determines whether the
control word is valid or not. If it is valid, the routine returns the entry
point address of the appropriate subprogram which in turn will process
the rest of the statement (the specification list). In box (2), the appro-
priate subprogram takes over the decoding, checking as it decodes for
errors. In box (3), the phrase ‘“execute command” stands for a variety
of actions which the system may take depending on the command de-
coded. For example, it may mean simply turning on or off certain sys-
tem switches, transforming data in memory, invoking computational
routines, and the like. If at any point in the interpretation process an
error is detected, then the task is aborted (box (4)), and the next task,
if any, is processed.

Some of the details of this general scheme of statement interpreta-
tion will now be discussed in the remainder of this section.

A. Command Decoding

Command decoding, as employed in LPL, involves two steps,
namely: (1) determining whether the control word is valid or not
(e.g., PRINTFORMAT is valid but PRINT FORMAT is not); and (2) on
the condition that the control word is valid, transfering control to
the appropriate routine which will decode and execute the rest of the
statement. STAPLES macroinstruction CMD provides precisely these two
capabilities, and in a manner that can only be described as elegant. To
see how LPL utilizes the CMD macroinstruction, consider the following
segments of IBM/360 assembler and FORTRAN code.

257

START O

LPLSM CSECT

DS D

CMD *, TN = LPLCT, ST =LPLST, KL =12, PN = LPLQ2
CMD 1, STOPRUN

CMD 2, TASKEND

CMD 3, TASKNAME, LPLQ3

CMD 4, VARIABLES, LPLQ4

CMD 19, MINIMIZE, LPL18
CMD

.......... *LPL* CONTROL PROGRAM

COMMON B (101, 203), KARD (20), K (20), INFOR (30),
VNAME (400), CNAME (200)

COMMON IN (100), IS (100), PRICE (201)

COMMON IPTR, IERR, NVAR, NCON, IREC, NVT, NTP, MNTP,
NTAB, ITER, LOG, KODE, SF

EXTERNAL LPLSW

......... INTERPRET NEXT STATEMENT
3 CALL LPLO(LPLSW)

......... EXECUTE STATEMENT

CALL LPLSW

......... RETURN TO SYSTEM

......... *LPL* INTERPRETER
SUBROUTINE LPLQ1 (LPLSW)

COMMON B (101, 203), KARD (20), K (20), INFOR (30),
VNAME (400), CNAME (200)

258

Covvnnnnnn GET STATEMENT KEYWORD
9 READ (10) KARD

IPTR = 1

K(1) = 10779525676
K(2) = 1077952576
K(3) = 1077952576

IF (KPKFLD (K, KARD, IPTR, 80) 10, 15, 11
10 IF (KSTRC1 (KARD)) 15, 15, 17
Covervnnnnn INTERPRETE KEYWORD
11 CALL LPL@2 (K, LPLCT, LPLSW, LPLST, KOMAND)
IF (KOMAND -1) 15, 21, 13
13 IF (KOMAND-2) 7, 7,19
Covvinnnnn. INTERPRETATION FAILED : UNIDENTIFIED KEY-
WORD
15 WRITE (3, 100) KARD

C.......... INTERPRETATION SUCCESSFUL : RETURN TO
CONTROL PROGRAM
19 RETURN
END

Consider first the sequence of CMD statements in the given segment
of assembler code. The first statement indicates, among other things,
that the routine generated by the CMD macroinstruction will be called
LPLQ 2. Next comes a series of statements of the form,

CMD n, cw, sn

where n is simply a sequence number

cw is a control word which identifies an LPL statement
sn is the name of the subprogram which will process the

statement

For example,
CMD 3, TASKNAME, LPLO 3

means that the keyword TASKNAME is assigned the sequence number 3
and that the TASKNAME statement (strictly, the specification list of the
TASKNAME statement) will be processed by subprogram LPLQ 3.

The process of command decoding is initiated in statement 3 of the
LPL control program (see given segment of FORTRAN cade), in which

259

subroutine LPL @ 1, the LPL interpreter, is called. In statement 9 of sub-
routine LPLQ 1, the next card is read and its image is stored in the 20-
word array KARD. After initializing IPTR (which indicates where field
extraction begins) to 1 and the receiving field (the first three words of
the 20-word array K) to blank, function KPKFLD is invoked. This sub-
program extracts the first field in KARD and installs this in K. For
example, if the statement that was read in statement 9 of subroutine
LPLQ1 is

TASKNAME SAMPLE *LPL* RUN

then the first three words of K will contain

K(1) = ‘TASK’
K(2) = ‘NAME’
K(3) = ¢ ’

In statement 11, K is passed to the CMD-generated routine LPLQ 2.
Pursuing the example above, LPLQ 2 now returns in KOMAND the se-
quence number, 3, of the keyword TASKNAME and in LPLSW the entry
point address of subprogram LPLQ 3. The interpretation being success-
ful, control returns (statement 19 of LPL® 1) to the statement

CALL LPLSW

in the control program. In effect, the control program calls LPLQ 3,
which then interprets the rest of the statement.

B. Free-field Input of Numeric and Non-numeric Data

One convenient feature of LPL as a language is the free-field input
of both numeric and non-numeric data. This means that there is no fixed
column assignment for any entity appearing in a statement. For exam-
ple, the two statements shown below are equivalent, i.e., they will be
interpreted in exactly the same way.

(VARIABLES VARBOL1 (10.76 VARBO2 (27.86) VARBO3 (9.67)

This capability is provided by modules generated by macroinstruc-
tion PRV. Two modules are particularly useful in this respect: KPKFLD
and KNVRTR. Consider the following program segment from subroutine
LPLQ 4, which processes the specification list of the VARIABLES state-
ment:

260

Cuovvvnnn.. *VARIABLES* statement
SUBROUTINE LPLQ4
COMMON B (101, 203), KARD (20), K(20), INFO (30),
VNAME (400), CNAME (200)
COMMON IN (100), IS (100), PRICE (201)

Covevvnnnn. EXTRACT A FIELD
7 IPTR = 1 POINT
K(1) = 1077952576
K(2) = 1077952576
K(3) = 1077952576
LEN = KPKFLD (K, KARD, 1 POINT, 8Q)

C.oovvviinl VARIABLE NAME

15 IF (MATCH (K, VNAME, 8, NVAR, 5) 103, 17, 103
17 NVAR = NVAR + 1
GOTO7

IPT= 1
IF (KNVFTR (PRICE (NVAR), 2, K, IPT, 12)) 101, 101, 7

Assume that KARD contains
Col. 3 12 18
4 { {
VARIABLES x1(25.14) x2(15)

Upon entry into subroutine LPLQ 4, field extraction begins at columr
12, which is the value of 1 POINT in the statement

LEN = KPKFLD (K, KARD, 1 POINT, 8Q)

The effect of the above statement is to extract from KARD and install
in K the string x1 (a variable name), after which the value of 1 POINT it

updated to 18.

261

In statement 15, the extracted variables name is appended to the
name table VNAME and the count of variables, NVAR,, increased by 1.
Then the next field is processed (GO TO 7).

The coefficient 25.41 is extracted by KPKFLD as a string, in the
same way that x1 and x2 (are extracted as strings). If ‘25.14’ is to be
used in a calculation, as it will be in the simplex computations, then it
must be converted into the appropriate binary form. This conversion is
performed by function KNVRTR. The statements

IPT = 1
IF 9KNVRTR 9 PRICE 9NVARO, 2, K, IPT, 12) 101, 101,7

in the program segment shown above perform precisely this task. After
the conversion, the string ‘25.14’ stored in K is moved as the real con-
stant 25.14 into PRICE(NVAR).

Conclusion

LPL is designed primarily for class use. The availability of a problem-
oriented language such as LPL should relieve the student of the burden
of having to carry out tedious, repetitive calculations. With the com-
puter easily instructed to perform the simplex computations, the stu-
dent should have ample opportunity to formulate more realistic LP
problems, to try different alternatives, and to gain more insight into the
problem as he interprets the computer printouts.

References
1. Gass, S., “Linear Programming,” McGraw-Hill, 1975.
2. Hadley, G., “Linear Programming,” Addison-Wesley, 1963.

3. Mathematical Programming System/360:Version 2, Linear and
Separable Programming — User’s Manual (Form 360A-CO-14x)

4. Reyes, Salvador F., “STAPLES — Structured Adaptation of Pro-
blem-Oriented Languages for Engineering Systems’, (unpublished
paper).

262

	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262

