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Introduction

Safety is perhaps the most important aspect of structural design. At present, most
conventional design procedures treat all loads and strengths as though they are
deterministic quantities. The uncertainties associated with the magnitudes of loads
and strengths is to be accounted for by the “FACTOR OF SAFETY” — the ratio of
structural member strength over member load. This ratio has been accepted by
many engineers as a true measure of the safety of a structural system against failure,
particularly when all the members are proportioned with identical factors of safety.
However, there are several important points to show that the factor of safety in its
present context is inadequate to quantitatively indicate structural safety and is not
a rational nor economical guide to engineering design.

Among the more important points are: First, both member strength and member
load are variables of some uncertainties. Since their statistical properties are not
explicitly considered in the design, the factor of safety does not provide the de-
signer with an objective understanding of the chance of failure of each structural
member. Second, the chance of failure of a structural system generally increases as
the member population making up the system increases. Thus, the survivability of
the members can not quantitatively reflect the survivability of the whole structural
system. Third, the introduction of vast arrays of new materials makes it extremely
difficult to comprehend fully the implication of a given factor of safety. Fourth,
the increase in extremes of loading environments such as space and undersea ex-
plorations makes it unrealistic, if not impossible, to design the structures for the
worst combination of loads and strengths to satisfy certain predetermined factor of
safety. Finally, limited natural resources and rising costs of construction make it
necessary to balance risk and expenditure. The factor of safety does not indicate
the true risks a structural system is being subjected.

In view of the above, it has been recognized in recent years that a more rational
criteria for computing structural safety is the probabilistic approach where the
statistical properties of all loads and strengths are being considered explicitly. This
method involves the assumption of probability distributions for the variables and
the construction of computational models to calculate the safeiy of ti:> structural
system.
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The selection of appropriate probability functions for various loads has been the
subject of research since mid-1940’s. Statistical parameters had been proposed for

*17273 ave forees?, floor loads in build-

some types of loads such as wind forces,
ings,>"® bridge loads™® and carthquake loads®™'?. Similarly, various structural
materials have been investigated in different aspects of strength.! "' A literature
search of statistical distributions of loads and strengths had been presented by
American Socicty of Civil Engineers.'®

There are three objectives of this paper. First, the basis of reliability analysis will
be presented. Second, the theoretical formulation of some approximate solutions to
the reliability of structural systems will be discussed. Of particular interest among
the solutions is the Ordering Survivability Method where strength correlations can
be incorporated in the analysis. Finally, a short summary of some of the results
obtained from a recent study made by the author on the applicability of some
approximate solutions will be presented.

Philosophical Foundations of Reliability Analysis

The Fundamental Case

The development of reliability analysis starts with the fundamental case. It consists
of a single member with random strength R subjected to a single random load T.
The strength R may be defined in any appropriate ways and the nature of load T
can be in different forms. Failure is defined as the event that load is greater than
strength. Three examples of the fundamental case is shown on figure 2.1.
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Loads and strengths are random quantities. Therefore, the survivability of the
structure is an uncertainty. The primary goal of structural reliability analysis is to
define the probability of failure of the system, Pf. In the fundamental case,

Pr=Pr(R<T) @2.1)

*Parenthetical references placed superior to the line of text refer to the bibliography.
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where Pr (X) is the probability that condition X exists.

It has been observed that the relative frequencies of the magnitudes of loads and
strengths may be modelled by some well-defined probability density distributions.
Figure 2.2 shows an example of these distribution functions. There are infinite
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number of possible combinations of loads and strengths tj — rj. The probability of
failure of the structure is the probability of occurrence of any one of the tj — 1
combinations where rj < tj. This failure probability may be calcuated by

Pr = [ LR () fT (t) dr dt (2.2)

Although the fundamental case is useful in clarifying some aspects of reliability
of structures such as the sensitivity of failure probability to input statistical para-
meters, it is only a single element of a complex structural system consists of many
members. Several investigations had been made to extend this classical fundamental
case to more realistic structures of multiple elements,! 7t°22

In theory, there are basically two types of structural systems: the weakest link
systems and the parallel link systems. Most real life structures can ~ classified
under either type or their combination (complex systems).

The Weakest Link Systems

Figure 2.3a shows the most basic example of a weakest link system. It consists of
several links connected in series. Each link “i” has a strength Rj and is resisting a
load T. Failure of this structural system is said to have occured when the load T
exceeds any of the member strengths Ri. Denoting by Fj the event that the ith
member had failed, the probability of system failure is the probability that any of
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the members failed. Thus, from the definition of union of probability events, the
probability of failure of the system, Pf, may be expressed as:

Pr+Pr(F, UF,UF, U...UFjuU...
...UFmn-; UFm) (2.3)

The probability of survival of the structural system is the probability that all the
members will survive. Denoting the survivability of each member as Sj, the system
probability of survival, Ps, is clearly the intersection of all survival events S;. It can
be expressed as

P5=Pr(S| ns; ﬂﬁslﬂ
...NSmoy NSm) (2.4)

and
Pr=1.0- P (2.5)

The survivability of the structure depends on the survivability of the weakest
member. Since the strengths of all members are random in nature, every member is
a potential weakest link and its probability of failure must be explicitly included in
the reliability analysis.

Aside from the chain shown in figure 2.3a, the weakest link system applies to
most statistically determinate structures. Two examples of such structures are
shown on figure 2.3b and 2.3c. It is obvious in these examples that the loads T;
resisted by the members are not necessarily equal in magnitude as in example 2.3a.
Failure of any member constitutes the failure of the whole structure. Thus, both
are weakest link systems.
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The Parallel Link System

Basic parallel link systems are shown in figure 2.4. It consists of several members
having individual strengths Ri. The applied load T is distributed to and resisted by
all members. When a member fails, the portion of the load that the failed member
can no longer carry is redistributed to the surviving members. This process of
member failure and load redistribution continues until all of the members had
failed and the failure of the structural system is said to have occurred. Therefore,
the system failure probability is defined as the probability that all members com-
prising the parallel system failed.

Pe=Pr(Fy,NF, NF;N...NFiN...NFp) (2.6)

Since the final survival of at least one member in the system defines the survival
of the structure, the failure probability can also be expressed as
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FIGURE 2.4
EXAMPLES OF PARALLEL LINK SYSTEMS
Pf=1.0_Pr(SlUS;US3...USiU...UFm) (2.7)

There are two major difficulties in calculating the probabilities of failure of
parallel link systems. First, it is necessary to perform a structural analysis to deter-
mine the load redistribution to the surviving members after the failure of a member.
Second, all paths leading to the failure of the structure must be considered expli-
citly.

It is seen, therefore, that the mathematical evaluation of equations 2.6 or 2.7 is
extremely complicated in that the member load varies with different failure paths.
Furthermore, as the member population and the degree of structural indeterminacy
increases, the problem becomes even more difficult to deal with due to the large
number of failure paths* and the even larger number of structural analysis that
must be performed. This is perhaps the reason why, to date, there is no general
solution to the parallel link system reliability analysis being created.

*The total number of failure paths need be considered is equal to the permutation of all m
members or equal to m! . Thus, the number of failure paths for a seven member system is 7! =
5,040.
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There are two types of failures in parallel link svstems that require quite ditfer-
ent approach in attempting to calculate the system reliability. They are brittle
member failure and yielding failure.

When a member of a load redistributing structural system tailed by brittle frac-
ture, its load carrying capacity is reduced to zero. Thus, the portion of the applied
load that was being resisted by this member prior to failure must now be totally
redistributed to the remaining surviving members.

When a member of a load redistributing structural system failed by vielding, it
has some load carrying capacity after failure that is equal to the vield strength of
the member. The excess member load after failure is redistributed to the other
surviving members.

Reliability of some other real structures that may be represented by the parallel
link systems also include sophisticated structures such as suspended bridges and
cabled roofs.

The Complex Systems
The complex system arises from the combination of weakest link and parallel link
properties that exist in a structural system. Most indcterminate structural systems
may be classified under the complex systems. Two examples of this type of systems
are shown in figure 2.5. Figure 2.5a clearly demonstrates the complex system. The
two modes of failure are the failure of the two separate parallel link sub-systems
composed of members 1-2-3 and 4-5 respectively. The failure probabilities of these
modes may be calculated by parallel link formulas. Since the occurrence of any of
the two modes defines the failure of the structural system, weakest link formulas
may be employed to compute for the overall reliability of the system.

Figure 2.5b is a fixed based frame subjected to a horizontal load T. Two of the
failure modes are presented in figure 2.5b,, and 2.5b,. Failure mode 1 is defined
by the formation of plastic hinges My, M,, Ms, and M¢. The other failure mecha-
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nism is the formation of plastic hinges M,, M3, M4, and Mg. Note that there are
other failure modes not shown in the figure. Each failure mode probability can be
computed by the parallel link system representation. For example, the failure
probability of mode 1 is the probability that plastic hinges formed at M, , M,, Ms,
and Mg under the load T. After the probabilities of failure of each individual modes
are calculated, the entire system failure probability may be computed by the weak-
est link solution. In this case, it is to find the probability that one of the failure
modes will occur.

COMPUTATIONAL MODELS FOR RELIABILITY ANALYSIS

The Need for Approximate Solutions

Due to manufacturing processes, chemical composition, and/or structural geometric
formulation, element strengths within a structural system may be statistically or
functionally correlated. As a result, the respective survivabilities of the members
can not be independently evaluated to compute the overall survivability of the
system. When all the statistical parameters are completely defined, the exact pro-
bability of failure of structural system with correlated strengths may be calculated
in three ways: (a) closed-form integration of the load and strength functions;
(b) numerical integrating the load-strength distribution; and (c) Monte Carlo simula-
tion of large number of trial cases.

Most probability density functions are very complex that closed-form integra-
tion can not be performed. The integrals must be evaluated by numerical methods
or Monte Carlo simulation. Both methods involve lengthy computer processing. In
general, the number of samples, n, required to simulate a structural system with
failure probability p at (1.0 — a) confidence level and with a relative error of y can

be expressed

(1- p)sz,
rS @3.1)
where Ko/, is that value which a standardized normal random variable exceeds with
a probability a/2.
The number of numerical steps NS needed for an m dimensional integration with
each variable distribution divided into NP spaces is

NS = NPM (3.2)

Thus, in deciding whether the numerical. integration or simulation will be used, one
should compare the number of steps in each case using equations 3.1 and 3.2 based
on the same accuracy. As an example, for a four dimensional integral with failure
probability in the 107 range, the required steps for each level of integration is 36 at
1% error. The total number of steps is therefore 36* = 1.7 million steps. For the
same problem with 1% error, the required sample size is 27 billion!
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Since most structural systems are constructed with large number of elements and
are designed for low failure probabilities, numerical integration and simulation be-
came costly. Hence, it is necessary to devise some approximate methods to closely
estimate the reliability of structural systems in a more economical fashion.

THEORETICAL BASES FOR SOME APPROXIMATE SOLUTIONS OF STRUC-
TURAL RELIABILITY
The two basic equations of probability of failure events are:

Pr=Pr(F, UF, UF ;.. . UFiU.. UFnp) (3.3)
and
Pr=1.0-Pr(S; NS, N... NSiN...NSy) (3.4)

By the manipulation of some probability theorems, these two equations may be
expressed in many forms. In the derivation of approximate methods, some terms in
the equations are discarded.

Type A Approximation
In the type A approximation, equation 3.4 may be expressed as
Pr=1.0—Pr(S;/[S; S3...Sm].
Pr(S;/[S3  Ss ..-Sml)...Pr(Sm=y/Sm).
Pr(Sm) (3.5)

One way of simplifying the solution of equation 3.5 is by assuming that all the
member strengths are uncorrelated. Thus

m
P = 1.0 - 1 Pr(S)) (3.6)

i=1

since for structural members, strength correlations are always positive,
Pr(Si) < Pr(S;/[Sisy N Sisg N...NSm]) (3.7

for all values i = 2 to m, equation 3.6 always resulted in overestimating Pf and
thus is an upper bound estimate of the true probability of failure.

Type B Approximation

In type B, it is assumed that the member strengths are fully correlated. By fully
correlated, it is meant that there exist a linear relationship between the true
strengths of the members. This linear relationship is usually positive in structural
systems. Thus, when the strength of one member is defined, such as by experiment,
the strength of the other members can be found by computation. This indicates



RELIABILITY ANALYSIS OF STRUCTURAL SYSTEMS 55
that when the weakest of all members survive the applied load, there is no chance

for the stronger members to fail.
If equation 3.3 is rearrange according to probability laws, it becomes

m .
P = Pr(Fy) + 'Ez{Pr(Fj/Sl Nns,N...N Sj_2 ).
J=
Pr(S; NS; N...NSj)} (3.8)
If the members were numbered in the order of increasing survivability, all the values
with the exception of Pr(F,) become zero. This resulted in

(B) - M .

Pt = M%X Pr(Fi) (3.9)
i=

Since all but one term on the right side of equation 3.8 are neglected, the approxi-
mation always underestimate the failure probability of the system.

Type C Approximation
Rearranging equation 3.3, the probability of system failure. may be expressed as

(©) m all
i=1 1#]j

=+

all
212223 Pl'(FlnF]an)_ A
1#j#k

+

Pr(Fy A F, NF3N...NFmy) (3.10)

In this equation, the magnitude in absolute value of any summation terms in the
right hand side is obviously less than its preceding terms because in a venn diagram,
the area defined by this term must be enclosed by the area defined by its preceding
terms.

Approximations can be made from equation 3.10 by considering only some, but
not all, of the summation terms in the right hand side. If one ends the sum with an
even sum term, the approximate solution will underestimate the system failure
probability. Otherwise, the approximation is guaranteed to be conservative.

To increase the accuracy, one may increase the number of terms included in the
analysis. But this might defeat the purpose of approximation because the amount
of calculation increases very rapidly as more terms are being considered.

Type D Approximation
The probability of system failure may be expressed as

P = Pr(F,) +Ezpr(Fj) . Pi([S, NS; N...O S5 J/Fy) (3.11)
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Since when the strengths of all members are positively correlated,
Pr(Sk/Fj) = Pr(S; M\ S, M. NSk Mo 0 S /F)) (3.12)
an approximation for equation 3.11 may be expressed as

m
Pr < Pr(F,) + £ Pr(Fj) . Pr(Si/EFj) (3.13)
=2 i>j
In order that the approximation be as close to the true solution as possible, itis
necessary to select the minimum of all Pr(Sj/Fj). The resulting equation is

(D) m i j--1 ,
Pr = Pr(F,) + 2 Pr(Fj) . {Min l’r(Si/l“j)} (3.14)
' i- 1

j=2

The Development of the Ordering Survivability Method
The probability of system failure may be expressed as

Pr = 1.0 — Px(S,) . 'T'r‘zpr(s,-/[s, NSy, N...NSiy ] (3.15)

J:
It is proposed that the conditional survival of members 3,4, ... m be calculated in
such a way that it is conditioned only on one of the j-1 survival terms. It can be
shown that

Pr(Si/Sk) < Pr(Sj/[S; M Sg.N ... N Sjy]) (3.16)

where k is any member from 1 to j-1. This approximation always overestimates the
failure probability of the structural system. In order that the approximation is
closest to the true probability of failure, it is nccessary to select the largest
Pr(S;j/Sk). Thus, a conservative approximation for equation 3.15 is

. j—1
PP = 1.0 - Pr(s,) . 7 (Max Pr(s;/Sx) (3.17)

=2 k=1

If the members were numbered in the order of ascending survivability, the
maximum of all Pr(Sj/Sk) is computed since all Pr(Sj) are conditioned on the
survival of the weakest link.

Equation 3.17 involves the integration of large number of two dimensional
(deterministic load) or three dimensional (random load) integrations for the con-
ditional survival probabilities. In order to minimize this calculation, the maximum
conditional failure probability may be approximated by

-1
I\l/(IEJI( Pr(Sj/Sk) = Pr* (Sj/Sk) (3.18)

where Pr*(Sj/Sk) is the survival probability of the jth member given that the kth
member had survived, k being the member most highly correlated to j. In case of
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many members equally correlated to j, the member with the highest probability of
failure is selected.
Equation 3.17 can now be expressed

(E) _ _ M k(S
Pr = 1.0 - Pr(Sy) . .172Pr (Sj/Sk) (3.19)
J:

j—1
K <jatpg = Ma;( Pij
1=

Pr(S,) < Pr(Sz) <...< Pl'(Sm)

Summary and Conclusions

In section 3.0 some approximate solutions were presented. It is of interest to study
the accuracies of the methods, the effect of strength correlations on the reliability
of the structures, and the feasibility of using the weakest link solution to approxi-
mate the failure probability of parallel link systems Ini an extensive study made by
the author, the following results were obtained.

Accuracies of Approximate Methods

It is observed that the error of type A approximation decreases as the system failure
probability decreases. It is also seen that at some low correlation coefficients, the
error as compared to the exact solution is very small. Because type A approxi-
mation is very simple to apply. its range of applicability in terms of strength
correlation coefficients is studied. The conclusions are presented later.

Type B is a very poor approximation of the true probability of failure. The error
associated with this approximation is not significantly reduced even at high levels of
strength correlations Furthermore, because the error is unconservative, the appli-
cability of type B is limited only to the case of fully correlated systems.

In types A and B, correlations among member strengths are neglected. In type C
approximation, correlations may be included and any degree of accuracies
achieved. However, greater accuracies are always obtained at disproportionately
increased difficulties in mathematical manipulation and increased computational
time. In applying type C approximation, only the first term in the right hand side
equation can be calculated easily. However, this one-term approximation is always
less accurate than type A.

Except for high failure probabilities, Pr > 0.1, types D and E both yield results
with negligible error. Even at high failure probabilities, the errors are limited to
10%. Since type D computes all intersecting failure events in pair and sclect the
highest values while type E only calculates the intersecting events of the most
highly correlated pairs, type E is greatly more efficient than type D.

Effect of Correlation on Failure Probabilities
Figure 4.1 presents four representative normalized curves showing the effect of
correlation coefficients on the probabilities of failure The number of members in
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the structural systems ranges from two to fifty. Failure probabilitics calculated
ranges from close to unity to 107* The results were obtained by ordering surviva-
bility method. Two parent distributions were used -- normal and extreme distni-
butions.

There are two obvious observations that can be made from figure 4.1. First, as
the failure probabilities decrease, their values at zero correlation are changed signi-
ficantly only by high correlation coefficients. Second, as the member population
increases, only high correlation coefficients can significantly lower the probabilities
of failure from their values at zero correlation.
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Weakest Link Approximation for Parallel Link Systems

It was demonstrated in the study that at high probabilities of failure, the parallel
link systems with brittle failure do not exhibit noticeable reserve strength over the
weakest link systems. Whereas, for the case of ductile failure, the system failure
probability is significantly lowered as compared to the weakest link even at high
failure ranges. It is further observed that failure probabilities increase at increasing
member population or increasing correlation coefficients.

Conclusions
The conclusions will be presented in two main categories: weakest link systems and

parallel link systems.

For the weakest link systems, the conclusions are the following:

1. The assumption of zero member correlation in system failure probability
analysis does not yield results with errors greater than 10% of the true probabilities
when the failure probabilities are less than 107 3 and the member correlation coeffi-
cients are less than 0.7 for normal distribution.

2. The range of applicability of assuming zero member correlation in reliability
analysis may be increased to include lower failure probabilities and higher member
correlation coefficients for the extremal distribution.

3. The range of applicability of assuming zero member correlation in system
failure probability analysis may be broadened to include higher failure probabilities
and higher correlation coefficients when the member population in the system
increases. This is true when the failure probabilities of the individual members are
approximately equal.

4. The assumption of full member correlation in system failure probability
analysis resulted in grossly erroneous and unconservative answers except when the
member correlation coefficients are extremely close to or equal to unity.

5. The probability of failure is very sensitive to strength correlation when the
coefficients of correlation is beyond 0.8. The Ordering Survivability Method as
developed in this study is the most efficient and the most accurate approximate
solution that includes correlation in the analysis.

For the parallel link system, the conclusions are the following:

1. When failures are defined by yielding of all members forming the failure
mode, the probability of failure obtained by parallel link approach is much less
than that obtained by the weakest link method.

2. The probability of failure of parallel link systems failed by yielding generally
increases at increasing member correlation coefficients.

3. When the failure of a parallel link system is defined by the brittle failure
(failed members carry no load) of all members leading to a failure mode, the
weakest link solution may be used to approximate the failure probability All
conclusions for weakest link systems also apply to this type of structures.
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