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The study of Earthquake Engineering is beat introduced by
reference to a closely related science called Seismology which deals
with the study of earthquakes and related phenomena. During the
last 30 or so years, considerable knowledge has been collected re-
garding seismic activity — and these data have been interpreted by
engineers in connection with the effect on structures. A proper
understanding of this potentially powerful activity, therefore, is
necessary if the interpretation has to be reasonable and accurate.
It must be emphasized that Seismologists are indeed highly-trained
scientists, and by training, their area of interest regarding earth-
quakes is quite different from that of the engineer. More particularly,
a Seismologist may well record any small earthquake which may
occur at any point on the earth; he may wish to learn more about
the internal constitution of the earth and he is most interested in
absolute times of travel of seismic waves. In his work, therefore he
needs sensitive instruments of high magnification and most of the
data he gathers may not be useful to the engineer. In contrast, the
engineer is more interested in the ground motion triggered by
earthquakes especially the type of ground response which causes
damage to his structures. He will therefore need rugged devices
which will record the largest shock near the vicinity of the instru-
ment.

The work of the Seismologist has paved the way in identify-
ing . active earthquake areas all around the world. For example,
a greater percentage of occurrences of earthquake take place along
the fringes of the periphery of the Pacific Ocean — from the south-
ernmost tip of western South America, all along the length of Chile,
Peru, the central Americas, Mexico, western United States and
Canada, Alaska—then coming down thru Japan, Okinawa, then the
Philippines, northeast Australia to New Zealand. This is commonly
called the Circum-Pacific belt. Another active region is the Al-
pide belt which runs east-west—from the Alps in Europe, thru
Asia minor (Turkey, Iran) thru the Himalayas of northern India
ending in Singapore, where it connects with the northern and
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southern orientation of the former belt. Minor Seismic areas in-
clude the Atlanta, Arctic and Indian Oceans. This is by no means
saying that no earthquake may ever occur anywhere else!

The earthquake mechanism is now understood to be caused by
the sudden release of pressures after a very slow process of build-
ing up strains within the earth’s crust. When the strains within
fault planes can no longer be restrained, displacements are the
consequences, and in the process, Seismic waves are created which
travel in all directions. There seems to be long periods of a so-called
unstable equilibrium and the sudden release is often times triggered
by many causes, among them atmospheric disturbances. Raid
(191ifi) proposed the elastic rebound theory which essentially in-
clude the discussion described above. In any case, the mechanism
originates at a relatively small volume of the earth’s crust, called the
FOCUS or HYPOCENTER of the earthquake, these points are fre-
quently 10 to 50 km. deep although records have shown that there
are a few earthquakes which originate at 600 km. The point at the
surface of the earth directly above the focus is called the EPICEN-
TER, after Richter (1958). The propagation stress waves is affect-
ed by the characteristics of known fault lines and it is important
to emphasize that the engineer must be more concerned about the
distance to this cansative fault rather than the distance to the epi-
center. A shallow-focus earthquake is one whose focus is not more
than about 50 km. deep.

The passage of seismic waves thru the earth’s crust is a com-
plex process. In order to have a workable knowledge of the pro-
pagation, seismic waves are oftentimes assumed to travel in an
isotropic, hookean and homogeneous layers of soil. This is of course
far from being accurate but a prediction based on these ideal as-
sumptions is better than not having any guide at all. Scientists have
started to take into account distortion of the wave fronts due to
anisotropy of rocks and soil, their inelastic behavior and also the
reflection and/or refraction of the wave which hits a boundary.
And because of the presence of substructures which are already
located in the ground, the accuracy of wave properties is not ex-
pected to be highly fixed. At any rate, seismic waves are classified
into:

1. Body waves

a. Dilatational, irrotational or P-waves are those whose os-
cillations are in the direction of the propagation of the
wave front. They are characterized by volume changes in
the earth and are the first to be recorded on seismographs
because of their fast velocity, which is in the order of
20,000 feet/sec to 30,000 ft/sec.
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b. Transverse, shear or S-waves oscillations in any plane
normal to propagation. They are characterized by no vol-
ume changes in the earth but they possess rotational qua-
lity. They are slower than P-waves since their velocity is
of the order of 10,000 feet/sec, but they transmit much
more energy.

2. Surface waves are of minor importance but they are:

a. Raleigh, or R-waves which travel at the surface of a solid
and are combinations of the P- and S-waves described ear-
lier above.

b. Love, or Q-waves vibrate transversely but do not possess
vertical components.

In 1935, Richter devised a Magnitude Scale in order to describe
the size of an earthquake. The muagnitude of an earthquake is the
measure of the energy released by the shock. This is designated as
M and is given by a number, which is defined as the logarithm (to
the base 10) of the maximum trace amplitude in microns which a
“standard” seismometer would record with an epicentral distance
of 100 km. The “standard” instrument has a period of 0.8 seconds,
a static magnification of 2,800 and is nearly at critical damping
Stated mathematically:

A
M =log,, —
A,

where A — max. trace amplitude and A, is the amplitude of one
micron. The magnitude of an earthquake, therefore, is an instru-
mental measure and is a scientific physical quantity. Experience
has shown that if M =5 or greater, the ground motion generated
are oftentimes severe to be potentially damaging to structures. In
the absence of instrumental readings, severity of ground shaking is
described by an Intensity scale. This assignment of an intensity
number is not a precise engineering measure but nevertheless, a
quantitative figure as well. The decision is based on three factors:
the geologic conditions, the distance from the epicenter or from a
causative fault, and the type of structure. A popular intensity scale
is the Modified Mercalli proposed in 1931 and consisting of 12 de-
grees as follows:

I. Detected only by sensitive instruments;

II. Felt by few persons at rest, especially on upper floors; deli-
cate suspended objects may swing.

III. Felt noticeably indoors, but not always recognized as a quake;
standing autos rock slightly, vibration like passing truck.
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1V. Felt indoors by many, outdoors by a few; at night some awak-
en; dishes, windows, doors disturbed; motor cars rock no-
ticeably.

V. Felt by most people; some breakage of dishes, windows, and
plaster; disturbance of tall objects.

VI. Felt by all; many are frightened and run outdoors; falling
plaster and chimneys; damage small.

VII. Everybody runs outdoors; damage to buildings noticed by
drivers of autos.
VIII. Panel walls thrown out of frames; fall of walls, monuments,
chimneys; sand and mud ejected; drivers of autos disturbed.
IX. Buildings shifted off foundations, cracked, thrown out of
plumb; ground cracked; underground pipes broken.
. Most masonry and frame structures destreoyed; ground crack-
ed; rails bend; landslides.
XI. New structures remain standing; bridges destroyed; fissures
in ground; pipes broken; landslides; rails bent.

XII. Damage total; waves seen on ground surface; lines of sight
and level distorted; objects thrown up into air.

>

The Japanese earthquake-intensity scale prepared by the Cen-
tral Meteorological Observatory (CMO) of Tokyo has endeavored to
include an acceleration parameter in addition to the descriptions. The
original version was divided into only VI degrees, but recently there
is a plan to increase this to VII. The magnitude of ground accelera-
tion assigned to degree VI is 512 gals, where 980 gals equals gravity
acceleration g. The Rossi-IForel intensity scale consists of 10 degrees
and they are based on the study of earthquakes observed in Italy.

Data on earthquakes in the Philippines is very scarce. I'or one
thing, recording seismographs are very expensive instruments; for
another, earthquakes do not happen as frequently as typhoons do—
and even if they do occur, there is usually no warning at all, again,
unlike typhoons. Instruments usually record displacements or accele-
rations but the latter type are preferred. It is important that at
least two components are recorded for horizontal accelerations. One
particular instrument will operate within a certain range of fre-
quencies such that a record consists of a wave form which is pro-
portional to ground acceleration. The important parameters of a
record include: the duration of the earthquake, the magnitude, com-
ponent direction, maximum ground acceleration, velocity and dis-
placement. One of the most severe earthquakes on record happened
in 1940 at El Centro, California, whereby the magnitude was 7.1, max.
acceleration of the ground was 0.33 g, max. ground velocity = 13.7
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inches/sec and max. ground displacement was 8.8 inches. The dura-
tion was well beyond 380 seconds with the most vigorous activity
occurring for 12 seconds. It was estimated that the maximum rela-
tive displacement at or near the focus was of the order of 20 feet.
The El Centro record has been used by many researchers in dynamic
studies because of its “completeness”. The probability that this earth-
quake magnitude will occur in a specific locality in California puts
the occurrence at 50 years. The Taft (California) earthquake of 1966
was of magnitude 5 to 6, had a max. ground acceleration of 0.5 g but
of much shorter duration, 12 seconds. As a matter of fact, the time
of vigorous shaking was only 1-1/2 seconds. In general, max. ground
accelerations decrease with distance from the causative fault. Ver-
tical components of ground accelerations are about 1,3 to 2/3 of the
horizontal components, but the former are about 509 higher fre-
quency.

During the past decade, researchers have succeeded in generat-
ing data idealized “laboratory” earthquakes in the probabilistic
sense. More recently, data recorded by many instruments during the
San Fernando valley (Los Angeles, California) earthquake of Feb.
1971, are utilized to “replay” the earthquake to a reduced scale in
the laboratory. These generation of simulated earthquake is a valua-

ble tool in the dynamic analysis of models.

In the dynamic analysis of a structure, it is important that the
structure be idealized as a mathematical model having a finite num-
ber of degrees of freedom. The lateral analysis is performed using the
model by imposing statistically equivalent lateral loads without due
regard to the influence of the foundation. In this Seminar an effort
will be made to take important factors into account in a truly dyna-
mic investigation. In any case, in the design of the structure to re-
sist dynamic effects, the engineer must have the following in mind—

1. that the structure will survive without damage even a moder-
ate earthquake.

2. that the structure will not suffer major damage as a result
of the most severe earthquake predictable during the antici-
pated life of the structure, and

3. that the structure should not collapse even if it is subjected
to one earthquake of abnormally strong intensity.

The theory of Structural Vibrations consists of writing the equa-
tions of motion of each particle of mass of the structure in order to
study its vibratory characteristics., In technical language, the en-
gineer wishes to determine the response of the structure due to some
dynamic effects. Response may mean getting the displacements of
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the various masses at specific times, describing the relative move-
ments of the masses, solving for the stress (or strain) variations due
to the motions of the parts of the structure, or the like. Of ultimate
interest to the engineer are the shears, axial forces and bending mo-
ments in the members—which quantities are the ones needed for de-

sign.

IDEALIZATION OF STRUCTURES INTO MATHEMATICAL
MODELS; SINGLE-DEGREE-OF-FREEDOM SYSTEMS

One of the most important parameters in the study of vibra-
tions is the so-called ‘“‘degree-of-freedom’”. This is defined as the
number of independent coordinates which are necessary to describe
the configuration of the system. It is obvious that the description
of every particle of mass consisting a structure will involve an in-
finite degrees of freedom. Mathematically, this can mean that an
infinitesimal volume of mass may be analyzed—its equation of mo-
tion derived in the form of an equation. In order to draw up the con-
tributions of all the other volumes, we need the integration of the
equation. This method is far from being practical, and even assum-
ing that the solution can be done at all, the procedure is cumbersome
and time consuming. IFurthermore, even if the problem is fed into a
computer, some means of a numerical scheme must be devised in
order to reduce the work into one which is feasible. This closed-
solution utilizes a mathematical model which is described as a distri-
buted-mass system, and the coordinates consistent with the assump-
tion are called distributed coordinates. In view of the numerical dif-
ficulties, this method is only applied, for illustration, to the case
of prismatic and straight beams.

A more convenient idealization is to assume that the mass of
the structure are lumped at certain points only, and the description
of the resulting response is made only for these lumped masses.
The members are assumed to retain their stiffnesses (or flexibilities).
The problem is thus reduced to one having a finite number of degrees
of freedom. Of course it goes without saying that the more closely
masses are lumped, the more accurate the solution — the limit of
which decision is the distributed mass problem itself. To illustrate a
distributed mass system, we take the case of a simply supported
beam AB carrying a distributed load p (t,x), having a mass per unit
length of the beam of m, and whose EI is constant. Such a beam is
shown in Fig. 1. The free body diagram of an infinitesimal length
dx of the bearmn is also shown. Noting that the y-axis is directed
downward, differentiating twice with respect to time this assumed
positive direction of displacement gives a positive dire¢tion of the
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acceleration also as downward. The jagged arrow therefore re-
presents the reversed effective inertia force as propounded by D’
Alembert. The equation of motion for the element is readily written
along the y-direction:

dv

my — —— = p(t,x) (1)
dx

e pltx) P(t,‘l) . dr
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In strength of materials, we have learned that the curvature can be
written in an approximate relation:

dzy M
= - - 2
dx2 EI @)
Differentiating Eq. (2) twice with respect to x;
d2M dv dty
- = — = El (3)
dx2 dx dx#

We can new write the total differentials as partial differentials and
substitute into Eq. (1) which yields

4
my -+ EI

ot = p(t,x) (4)

which is a fourth-order partial differential equation.

The simply supported beam may also be idealized as a lumped
mass system shown in Fig. 2. The entire mass of the beam is lumped
at a single point, say at the center, while the rest of the beam re-
tains its flexibility. It is clear that a single coordinate its flexibility.
It is clear that a single coordinate will describe completely the con-
figuration of the system — and as such is a single-degree-of-free-
dom system, oftentimes abbreviated SDF. The girder, which in-
cludes the floor, of the single-bay bent shown in Fig. 3, has a mass
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which is very much greater compared to the masses of the two
columns. The error will be small if we assume that all the mass is
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concentrated at the girder level. A single coordrnate x is necessary
to define the vibration of the structure. Furthermore, if the girder
is assumed very stiff in comparison to the stiffness of the column,
there will be no rotation at the joints. The bent can also be re-
presented by the spring mass system in Fig. 3. A tall tower may
be idealized as a 5-degree of freedom system shown in Fig. 4 while

a three-story frame is represented as a 3-degree-of freedom system
in Fig. 5.
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The synthesis in the analysis of a multi-degree of freedom
system (MDF-System) involves the superposition effects of as many
SDF systems, and this makes the treatment of SDF systems an
important one. The most general SDF idealization must include all
effects due to structural considerations. Essentially, there must be
a single lumped mass supported by a spring in a free vibration state.
To take cognizance of the effect of damping, we introduced the con-
cept of a damper, drawn as a dashpot representing a presence of a
damping force which always opposes motion. The classical damping
force is one which is classified as viscous—meaning to say, whose
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magnitude is proportional to velocity. This statement is written
in formula form as

Fd =—C}.{ (5)

where ¢ is the damping constant. Lastly to complete the picture,
a forcing function is introduced which is a function of time. This
last inclusion classifies the problem as a forced vibration. The com-
plete idealization of a SDF system is shown in Fig. 6 below. Draw-
ing the freebody diagram of the mass and basing quantities on the
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assumed positive directions of x, x and X, the equation of motion of
a damped forced vibration of a SDF system is which is a first degree,

mx + cx + kx = F(t) (6)
second order differential equation. If t;here is no damping, the term

cx is deleted and the problem is undamped. If there is no forcing
function, F (t)==0 and the vibration is considered free. Taking the
simplest case of an undamped free SDF system, which is of course

mx 4+ kx =10 (7)

a homogeneous differential equation. We now define a parameter
w2 = k and write

m
X 4 W2x =0 (8)

whose solution is

X = A cos wt + b sin wt (9)

Differentiating Eq. (9) twice with respect to time and substitute
this value of x and Eq. (9) itself into Eq. (8), we can verify that
Eq. (9) is indeed the solution.

It is instructive to determine the solution of the damped free
case since this solution is also the complementary solution of the
equation of the equation of Eq. (6). Writing
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C - K
x+ o x+ o x=0 (10)
¢ K
we also define — = 2pw and we have already defined — = w2.
m m

The new parameter g is called the damping coefficient which is the

° . Critical damping which in itself is not too important

Cer
to engineers particularly with respect to structures is defined as

the constant which will damp out the vibration in the shortest pos-
sible time. Some engineers may argue that the critical damping
case does not offer any vibrations at all. Of particular interest to
structural dynamics is B, since it is sufficient to know the per-
centage of damping rather than the actual values of C or Cer. Let
the solution of Eq. (10) be in the form:

ratio

X =e
therefore, X = sed
X — sZest _
and substituting, et (s2 + 28w e s + w2) =0 (11)

The roots are
—2BwW = \/4pB2w? — 4dw?

1y 2 =— 5
= (B V@ —Dw) (12)
It is seen that if 8 =1 (the case of critical damping), of if B> 1

(called overdamped case), there is no vibration. The only roots of
interest are those when 8 < 1 and substituting and introducing the

two constants:
x = Ae(B + VAT — B)wt) 4 Be (—8 — V(1 — 3%)wt) (13)
Introducing w,=+/1- g2 v, Eq. (18) is simplified into
x — e —Bwt(C,cos w,t + C, sin w,t) (14)

If =0, Eq. (14) reduces to Eq. (9) with A=C, and B = C.. The
term w is called the natural circular frequency (radius/sec). Other
definitions are

27
Natural Period =T = —— (seconds) (15)
w
1
Natural frequency = f — — (cycles/sec). (16)
T
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Let’s take the undamped free case of Eq. (9) which is simpler to
illustrate. If the initial displacement and initial velocity of the sys-
tem are, respectively, x, and x,, we differentiate Eq. (9) once with
respect to time to get the expression for velocity, and differentiate
again to obtain the expression for acceleration. Substituting the
values of the initial conditions, we have two equations which enable
us to solve for the constants A and B, and

Xo

X + X, cos wt 4+ — sin wt (17)
w
In the same manner, the damped free case of Eq. (14) gives
X=—-¢e (x, cos wit + — 4 Bx, sin wgt) (18)
: w
VI-P

The graphical representation of Eq. (17) is shown in two com-

ponents in Fig. 7:
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Eq. (18) is represented graphically by Fig. 8 above.

With regard to the differentiationn between w and d,, observa-
tions indicate that a typical structure have between 5 to 10 per
cent of critical damping and for this matter, it may be concluded
that the decrease of natural circular frequency due to damping
may reasonably be ignored.

It is convenient to get a measure of damping by noting the
decrease in amplitude between two successive peaks of the ampli-
tude of vibration. It is easy to show that

X Wa 2
= efvTd — ed where Ty = —= (19)
Xk +, 27 Wd
or the ratio between any two peaks:
Xy
= em (20)
Xk + n

the parameter § is called the logarithmic decrement.

The solution of the forced vibration case involves looking for
the particular solution in addition to the homogeneous solution al-
ready determined. F(t) is a forcing function usually represented
by a graph, and can also be written F(t) = F, . f(t) where f(t) is
a dimensionless time function. To illustrate the method, we assume
F(t) given by Fig. 9, which is best described as a suddenly applied
load with infinite time or with a time duration.

_ - himme .
r (*) / (\: durcitior
e 4

FIGURE 9

Assume an undamped forced vibration such that F(t) is given
by Fig. 9 and of infinite duration. The equation of motion is

mx + kx=F(t) =F, (21)
The complementary solution of the above equation is given by Eq.
F,
(9) as discussed before. The particular solution is X;, = — and the
solution is K
F,
X=xc+xp=Acoswt+Bsinwt+-§ (22)
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Differentiating once, and then again, with respect to time to get
expressions for velocity and acceleration, and incorporating initial
conditions, we find

F, X,
A=%x,-—and B=—
K w

Substituting back, we get the response

X, F,
sin wt + —K— (1 — cos wt) (23)

X = X, cos wt 4

w
homogeneous solution due to forcing
function

As seen from the above example, the determination of the particular
solution is the key to the solution and this can readily be done only
for the simpler pulses. If the forcing function curve has irregular
(or also discontinuous) shape, it is important to 1,, for other methods.

T
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o F(T) !
) - !
Flo) | 7 i
|
! ‘o
! 3 t
Fig. 10

Fig. 10 shows a general forcing function curve, and the parameter
is made the independent time variable. It is required to get the
response of an undamped SDF system due to the effect of an in-
crement of load F (T) shown cross-hatched in Fig. 10. Since F(T)
is acting in a very short interval of time, the impulse i of the load
is F(T) , dT which is equal to the momentum mx; or

F (1) ., (dT)

X = (24)
1 m

where Xi is the velocity at time T, and may be considered as initial

velocity imparted to the system at rest. The displacement at a later
time t, due to this single increment of impulses for the undamped
case is given by Eqn (17). We make Xi the initial velocity, and
initial displacement equals zero,
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F(T1) dTr

dx = — % sinw (t7T) (25)
mw

It should be clear that as soon as the impulse acts, there will be an
“instantaneous” change in velocity but the initial displacement X,
is zero so that the cosine term drops out in Eqn. (17). Eqn. 25 re-
presents the contribution to the response due to an increment of
impulse. Summing up and noting that wm = K,

F (1)
= - w sin w (t-1) dT, or
X = —K w fi2 £ (T) sin w(t-T)dr (26)
1

F
It is clear that % is the static deflection if Fo is the static load

and this ratio is sometimes written X,,. The limits t, and t. refer
refer to the inclusive times during which the forcing function is
acting. The response given by Eqn. (26) is a product of two factors,
namely,

X = X;.. Duhamel Integral

For a suddenly applied constant load Fo, the Duhamel Infegral is

t t
1
w f sin w(t — T)dT = W(;;) f sin w(t-T) dT (-w)
o o
= —[-cos(wt-wT)] = (1-cos wt) (27)

which is identical to the solution given by Eqn. (23). A similar deri-
vation may be done for the damped case which gives the following
result for the Duhamel, or sometimes called the convolution, In-
tegral:

w2 t, —Bw (t—T)
;dt e f(T) sin wa(t — T)dT (28)

It is interesting to know how the response curve compares with the
free vibration case:
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It can be observed that the curve is very similar to the previous
solution for the free vibration case shown on Fig. 7. The only dif-
ference is that the axis is shifted by X,, = Fo/K so that the maxi-
mum displacement is exactly twice the displacement that would oc-
cur if the load Fo were applied statically. The evaluation of the
Duhamel Integral introduces the concept of Dynamic Load Factor,
or Amplification Factor, which is an non-dimensional factor to be
multiplied to X;, in order to determine the maximum dynamic
amplitude of vibration.

Suppose that the suddenly applied constant load has a duration

t; as shown in Fig. 9. The equations of motion are (for the un-
damped case)

N

mX—.l-Kx=Fo 0<t<d
mX 4+ Kx = 0 ta <

For the first of the above equations, we do have the solution as-
suming initial displacement and initial velocity are zero,

Fo Fo
X = ? (l—COS Wt) Xd = - (I—COS Wtd)
] Fo . Fo
X = — wsinwt Xy = — w sin wt,

K K

(t-1d)
F(7) |
Fo

-

{4
Fig. 12
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At time t,, we may now substitute the initial conditions X, and X,
and give the solution for Fig. 12.

The free vibration case. At time t > t;, therefore, the response is

X
X — X, cos w(t—ta) + — sin w (t-ta) (29)
w
which can be simplified as
Fo
X — — [cos w (t-t4) — cos wt] (30)
K
By Duhamel Integral,
Fo td
X—=—mw f £(T) =1 sin w(t-T) dT
K o
Duhamel
Fo 1 td
= ? w(;) f sin w(t-T) (-w) dT
o
t Fo
—— [cos w(t-T)](l — — [cos w(t-ts) —cos wt] (31)
o -K

which gives the same result as Eqn. (JC). In none-dimensionalized
form,

2 — - — ] — |
{ I |
. ] ]r id. - £
DLF 14— /] “Li 4
| | ‘ |
| ,: | £
‘td Q4 3"’4
Fi1c. 13

Equ. (30) or (381) is graphed in Fig. 13 above for T,/T =5/4.
One important feature of the graph is that the DLF (dynamic load
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factor) is 2, as found earlier, for 0 < t < t;, which is a forced
vibration case. For t > t,, we have free vibration (the forcing func-
tion has ceased to act) and the amplitude becomes less with the
corresponding decrease in the DLF.

It is seen that the Duhamel Integral is indeed a powerful tool
in the evaluation of responses due to any shape of forcing function.
However, if the function cannot be expressed mathematically con-
veniently, the computation of the response can be well solved by
numerical methods.

There are many force pulses which may be useful for exerciscs
and which may represent the approximate pulse. However, of par-
ticular interest to earthquake engineering is the case of support
motion. The model of the SDF system involving this class of prob-
lems is shown in Fig. 14. Suppose that the system is subjected to

K . -
9%—-’\/‘!N“-"‘ m
[eld

77— ¥

— (1
Fic. 14

support motion y defined by a displacement function y =y, . f(t)
where y, is some arbitrary magnitude of support displacement. The

equation of motion is
m;é + K(xy) =0

or mx + Kx = Ky = (Kyo) . f(t) (32)
For a suddenly applied constant support displacement, the right
hand side of Eqn. (32) becomes Kyo) since f(t) = 1. The form of
Eqn. (32) then is the same as that of Eqn. (21) — and the solu-
tion is readily written:

x = ¥, (1l-cos wt)
If the relative displacement is defined as u = x-y,

u =y, (1-cos wt) —y, = ¥y, cos wt (33)
The force in the spring is K, and the negative sign on the right hand
side of Eqn. (33) simply means that the spring is initially in com-
pression when y, is positive. «

When the input is support acceleration rather than support

displacement, it is convenient to change the variable into relative
displacement, thus
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Let u = x-y as before, then u = x-y (34)

The equation of motion is

mx + (K)(xy) = 0
m(ii+§) + Ku = 0

or mu 4+ Ku — my — —my, . £(t) (35)
Eqn. (35) is identical to those for forcing functions if F, is replaced
by —mi}o and the general solution for the relative motion u is

my,w

u = £(T) sin w(t — T)dr (36)

There are useful remarks regarding Eqn. (82) and Eqn. (35). The
former does not determine the spring force, which represents mem-
ber force, directly, whereas the latter (Eqn. 35) does. Besides most
data on ground motion recorded by instruments are in terms of
acceleration. If damping is considered and support motion is in
terms of acceleration, the equation of motion is

mx + e(xy) + K(xy) — 0

or mu -4- c;1 + Ku = m;fo . ft(t) (37)

which is similar in form to Eqn. (6) and solution is available by

merely replacing F(t) or F, . £(t) by -my,.f(t) on the right
side. If support motion cannot be expressed in terms of accelera-
tion, it becomes necessary to include both displacement and velocity

of the support, thus:

mx + c(;c-.y) + K(x-y) = 0 as in Eqn. (37)

We write

mx + Cx + Kx = cy + Ky = cy, £(t) + Ky, £(t)
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MULTI-DEGREE OF FREEDOM SYSTEMS;
THE MODAL ANALYSIS

When the configuration can no longer be defined by a single
coordinate, then we have a MDF (Multi-degree-of-freedom) Sys-
tem. Since the formulation of the problem is the same regardless
of the number of degrees of freedom beyond one, we will discuss
two-degree-of-freedom systems for simplicity. Fig. 15 shows one
system having two degrees of freedom. The masses are once again
assumed to be concentrated at the floor levels and the stiffness of
the two columns at each floor. The frame of Fig. 15 may be ideal-
ized by the model also shown on the right of the frame in the same
figure. The free body diagrams of the two masses are shown in

Fig. 16 below. The Equations:

I e 5. "= AR
3

N M LS E ML w Xy

k. wv; Xy K, K' ‘P\KN——;F; F(t) R4

VOL N LTI IIA
By T I3

K
Fic. 15
nX  KiX; Ko(p-Xy) § mg¥,  Kp(Xp-Xp)
- m f» —» -\ 4 m2 [—-—pl’z(t)

of motion are readily written:
mx; + K X7 = K. (X:-X3) = Fi(t)
m. X, + K, (X-X37) = F.(t) (38)

Eqns. (38) can be conveniently written in matrix form:

gl'mz { } (K‘+K“ { }:{5228 } (39)
or more compactly,
M] (X} + [K] {X} = (F(})) (40)
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Equations of motion of higher degree of freedom systems can also be
generated in the same manner, but the compact form will be iden-
tical to Eqn. (40) which is the general form of the matrix equation
of motion for any multi-degree of freedom system. [m] is called the
mass matrix [K] is the stiffness matrix, { X } is the acceleration
vector, { X } the displacement vector and the F(t) the forcing
function vector. For discrete systems, the forms of the [m] and
[K] matrices depends upon the coupling of the equations. Certainly
it must be realized that the [K] is always a symmetric matrix be-
cause of Maxwell’s Reciprocal Theorem.

To understand the meaning of the elements of the stiffness
matrix we write for examples

Kn K. Ky
K.. Ko !
K'xi Ke?. K'n

where the K’s are stiffness coefficients”. For example, the force on
P, due to a displacement X, is merely P, = K;i.X., etc. If damping
is considered, then the matrix equation of motion is

m]{X)} 4 [l {X} + [K] {X]) = ({F())} (41)

which is exactly in the same form as Equ (6) for SDF systems.
The new terms to be defined are [c] which is called the damping
matrix, and {x} which is the velocity vector. Since the matrix
equation of motion, Equ (41) or Equ (40) represents, in compact
form, independent differential equations of motion, the sizes of the
matrices and vectors correspond to the number of these independent
equations, which is also equal to the number of degrees of freedom

of the system.

The solution of Equ (40) or Equ (41) involves the simultaneous
solution of n equations to solve for a unknowns, where n is the
number of degrees of freedom.

It is appropriate to introduce the concept of normal modes of
vibration. A system is said to have exactly the same number of nor-
mal modes as degrees of freedom. Associated with each normal mode
is a natural frequency and a characteristic shape. The distinguish-
ing feature of a normal mode is that the system could, under certain
conditions, vibrate freely in that mode alone. During such vibration,
the ratio between any two displacements is constant with time. These
ratios define the characteristics shape for that mode alone. An ex-
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tremely important fact, which is the basis of the Modal Analysis of
multi-degree of fredom systems is that the complete motion of the
system may be obtained by superimposing the independent motions
in the individual modes.

The equations of motion in matrix form of a sytsem having n
masses and n degrees of freedom but no external forces is

[MI{X]) + [KI{X) =+ [X]= {0} (42)

The undamped case is taken because in the normal modes, the masses
vibrate freely.

Let{X} = {Z} sin wt, .. {X} = -wz{z}sin wt

where { X} is called the amplitude vector and w is a constant.
Substituting equations (43) into Equ. (42)

-w? [m]{z} sin wt + [K]{X} sin wt ={0}

or placing in standard form,

{1 - w2} ) - o)

which represents a “generalized eigen value problem”, and the for-
mulation of Equ. (44) is called Stiffness Formulation. The inverse
formulation, called the Flexibility formulation, is derived by pre-
multiplying both sides of Equ. (42) by [F] which is the flexibility
matrix. This matrix [F] is the inverse of the stiffness matrix [K].
Writing therefore,

[F]1 [m] {X} + {X)}= {0} (45)

Making [F] [m] [D] called the dynamical matrix, the standard
form in the flexibility formulation reduces to

{[D] - —w17 [I]}{X} = {0} (46)

which is a “regular eigenvalue problem.”

Expanding Equ. (44), we get n homogeneous equations which
can be solved only for the relative values of the X’s. Recalling
Cramer’s Rule for solving such equations non-trivial values of x
exist only if the determinant of the coefficients is equal to zero.
For an n-degree of freedom sytsem.
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(Kn -1m, W2) Kl'.’ ..... kin
Kax . (Kii -m Ww2) . = 0 (47)
Knl | . .. (KoM, W2)

The expansion of the above determinant leads to the so-called
“characteristic equation” of the form.

(W2)n + C, (W2) =2 4 ...C (W)™ 4 ... Cn =0 (48)

The largest root gives the highest frequency or the frequency
of the highest mode. A similar procedure can be followed to solve
Equ (46) and when this is done, the largest root gives the lowest
frequency or the frequency of the fundamental mode.

If the system shown in Fig. 15 is made to vibrate freely that
is F, (t) = F, (t) = O, following the stiffness approach for-
mulated by Equ. (47) gives the following characteristics equation:

2 K1 + K'.: Kc K1 ’ 2
W) -[———— + —| (W2) + — —=0 (49)
m, m. m, m.

If my = M. = M, and K, = K, = K, the roots are

K .
W12 == O’ 38 — » OY W1 = 0.616 / E
M V M  rad/sec (50)

X W 1616 /X
22 = .62 - 2 = . .
w 2 M or V' M rad/sec

Substituting back these W2 into Equ (44), we find that
1

fxq} - {1.62} and {%5} - §612} (502)

which are the mode shape vectors commonly written as 0,
and 0.. These define the characteristic shapes of the two modes.

The procedure outlined above is easily applied to 2 or 3 degree
of freedom system, but this “direct” method is cumbersome if the
number of degrees of freedom becomes big. Two methods which
are easily geared to the computer are the Matrix Iteration Method,
proposed by Stodolla-Vianelo, and Holzer’s Method. The so-called
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“sweeping technique enables the engineer to sweep out succeeding
mode shapes thus eliminating the simultaneous substitution to solve
for the next mode shape.

An important property of mode shape vectors is that of ostho-
gonality of the modes which means that the mode shape vectors
any two modes, i and j for instance form a product such that

{oi}t [M] {o;} == [0}

THE MODAL ANALYSIS assumes that we may represent
the response of the sytsem as a combination of the responses of
the natural modes. For the two-degrees-of-freedom system, the
response in matrix form is

Ixqel } ;
X;(t) Aq {61 cos wqt * B1 §91?S]..n wqt
' + Az{e z}cos.wzt + B2{62}51n wot (51)

There are 4 constant sin the A’s and B’s. { 0, ) is the mode shape
vector in mode i and the corresponding circular frequency is W,.
If the initial conditions are now given by two vectors { X,) and
{ X, }, which are the initial velocity and initial displacement vectors,
respectively,

o= BP0 ‘[0 fio}
gei}t[mj fo;} } [m” f

Equs. (52 enable us to write the response of a multi-degree of free-
dom system by superimposing the effects of all the modes as follows:

modvs PN **IOQes
fxct )} A foslos Wt {o.1
1—1 - i

We have already seen that the matrlx equations of motion is
a set of n simultaneous differential equations where n equals to the
number of degrees of freedom. These equations are obviously coupled.
If we can find a way to uncouple these solutions, we may be able to
solve the equations one by one, since in this way each equation will
vield only one unknown. Fortunately, i# is possible to transform the
system of equations as formulated in “generalized coordinates” thus

[M] 3x )+ 1{x} = Pl co) (54)

(and if damping is considered, the left side will have another matrix
factor + [c¢] {(x)} into another set of coordinates called normal, or
principal coordinates.

(52)

1051 cin- wit (53)
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