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INTRODUCTION

In almost all methods proposed for the dynamic analysis of
multistorey rigid frames subjected to an earthquake-type disturb-
ance, no consideration has been formalized with respect to the inter-
action between the structure and its surrounding medium. A com-
mon practice assumes that the structure is attached to a perfectly
rigid foundation and disregards any local influence of the medium
on the resulting structural response. Thus, the dynamic disturbance
is frequently oversimplified by replacing loads with their static
equivalents, either by assuming lateral loads at every floor level or
by subjecting the structure to an overall effect of a total base shear.
It is understandable that assumptions must be selected so as to
simplify the mathematical solution, but there is growing evidence
through actual observations that other parameters of the coupled
structure-medium interaction must be studied. This dynamic cou-
pling between the structure and its foundation is a function of the
energy exchange between them and it is believed that the natural
period of vibration and the resulting response of the structure may
be affected significantly by this fact.

Discussion of the theory of elastic waves in solids is beyond
the scope of this paper. However, a basic knowledge of how the
dynamic disturbance is propagated in solids is essential. It is there-
fore sufficient to state that when an elastic medium is deformed
according to some input function, such as displacement, velocity or ac-
celeration, adjacent particles are displaced, and as time passes, more
and more particles are included in the disturbed region. The net
result is the propagation of an elastic stress wave through the
medium. Since particles will certainly not develop infinite displace-
ments, such of them is expected to move within a bounded region.
The net result is the propagation of an elastic stress wave through
the medium. Since particles will certainly not develop infinite dis-

185



placements, each of them is expected to move within a bounded
region. These individual oscillations, however, are not independent
of each other and as a result, motion relationships between adjacent
particles are collectively known as a coupled condition.

In an isotropic and homogeneous medium, longitudinal and
transverse waves are normally produced. These waves travel at
known velocities in essentially a “free-field” condition as long as the
medium remains semi-infinite in extent. However, when either wave
type reaches a boundary or a discontinuity, waves of both types are
generated by reflection and by refraction.

In this study, the structure is assumed to be of uniform, homo-
geneous isotropic material and is idealized as a lumped-mas model.
The resistances in generalized coordinates are derived by a reduc-
tion scheme of the singular stiffness matrix previously assembled by
conventional structural methods. A useful simplication neglects axial
distortions and the equations of motion of the lumped masses in
the generalized coordinates, together with the generalized stiffness
matrix and the imposed boundary conditions, form the mathematical
formulation of the problem.

The medium is likewise idealized as a lumped-parameter model,
the dynamic analysis of which leads to a system of centered finite
difference equations which have been shown to be mathematically
consistent with the corresponding equations of the continuum. This
approach basically transforms the continuum, which possesses an
infinite number of degrees of freedom, to one which has a finite
number of degrees of freedom. The structure-medium coupled solu-
tion results in recursive equations which are integrated numerically.
The unknowns of the problem include all the components of stress
at every assumed “stress point” and the components of acceleration,
velocity and displacement at every ‘“mass point” for each successive
time interval.

Inherent in any numerical procedure is the fact that solutions
can, at best, be only approximate. This is mainly due to the fact
that the real continuous medium has been replaced by a discrete
model in order to reduce the number of degrees of freedom to a
reasonable finite number. Discussion of theoretical round-off errors
due to this discretization, and also the stability and convergence re-
quirements of the present numerical scheme are also beyond the
scope of this paper.

The purpose of the investigation is to evaluate the influence
of the structure-medium interaction on the response of a plane rigid
frame subjected to an earthquake-type disturbance. Three inter-
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related problems are solved as follows: (1) The coupled structure-
medium system, (2) The same structure on a rigid foundation sub-
jected to the “free-field” effect of an input emanating from a point
away from the structure, and (3) The structure on a rigid founda-
tion subjected to direct base disturbance which is the input itself.

Constitutive Relations Of The Solid Medium

The general theory of behavior of elastic solids is extensively
developed and discussed in many texts on elasticity. The Dynamical
equations of motion of an infinitesimal element of volume are derived
on the basis of the theory of stress. The most general form in which
the relation among stress components and strain components may
be expressed symbolically is given by:

{3} = [el{e) o

where each of the stress and strain vectors consists of six compo-
nents, and [C] is a 6 x 6 matrix of elastic constants. For an iso-
tropic material, only two independent constants are required for
the complete definition of [C]:

VE E
A= and G = — (2)
(1+v) (1-2v) 2(1+v)

where E is the modulus of elasticity and v is Poisson’s Ratio of
the medium.

In the present case, a typical plane rigid frame, lying in the
x-y plane is considered one of many which form a relatively long
building whose axis lies along the z-direction. For these reasons,
plane strain condition in a two-dimensional case is assumed, and
Equation (1), when expanded, becomes:

(0x ) v v v 0 |[ex)
v 1ev v 0
(7l L 71 ®
oz | (+V)(1-20) Jv v 1-v 0 |le,
or simply, -

{o} = [0]{e} (3a)
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The Medium Model

In the two-dimensional x-y plane, the differential equations of
motion of an infinitesimal element of volume are:

-
oT + (o) = P
aX oY 3tZ

where p is the mass density of the medium, and the stresses are
defined in the usual convention. Substituting the strain-displacement
relations and the constitutive equations of elasticity into the above
Equations (4), we have:

A+ G)a_e + GA%?u = P 2d‘u

oX W (5)
(+ G + @y = p2%
: oY at2

where A2 is an operator defined as

82 82
3)?[4'5{7 and e=€x+€y

By proper mathematical manipulation, Equations (5) may be
shown to yield the following:
(A + 2G) A% = p 9%
ot?
- ©)
p oW,

ot?

GA2W,

where W, represents rotation about the z-axis. Equations (6) are
clearly wave equations which give, respectively, the dilatational and
transverse wave velocities:

Ci =./A+2G and .C2 ="§_ Q)
- P - .PI -

The basic generalized medium element is taken as a stress
point ‘0’ with its associated four mass points numbered 1, 2, 3 and 4
as shown in Fig, 1. In this element, strains are defined by the dis-
placements of the four masses, whereas stresses are defined only at
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is represented in non-cartesian reference. Since the medium has
been assumed to be uniform, the mass lumped at a point is the sum-
mation of the contributions of tributary volumes (or areas for
planar conditions) as shown in Fig. 2, which also shows the order-
ing of the four masses. The volume tributary to Mass 1, for exam-
ple, is proportional to:

Vi = KAy = KA |14+ 42
1=Ky 4[7 A_i] ()

where A is the area bounded by the four masses. With further re-
ference to Fig. 1, the following are defined:

X, ¥y z_md z as the rectangular cartesian global reference

:_c, ; and z as the non-orthogonal local coordinates.
These two sets of reference axes are related by the following matrix
equation:

4

X cosa cosB O X
/i ./
<y e = |sino sing 0|y (9
| 2 0 0 11|z
or inversely: )
ri sinf -cosB 0 p'e
y |- 1 -sina a 0 y
z sin(B-0) 0 0 sin(B-a)| | z

Assuming small-displacement theory, strains may be expressed
in terms of the partial derivatives of displacements. In matrix form,

the relation between incremental strains and incremental displace-
ments is:

rF Y (Au,
A€x1 _A;_;
Au
Aey _ 1 . . . AV2
Ya ) = SaEmay L1528 BZJJ‘Aﬁi’ )
€z LVy
{AVXYJ %\L}u
S
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where:

sin g/ax 0 | sin o/ay ¢
= 0 -cos B/AX 0 - -
(1] :[82] = C0S o/ay
0 0 ' 0 0
-cos B/aX sin B/Af_, “COS /by sin o/Ay
or simply:
{ae} = 1/sin(8- o) [B] (au} )

By the Principle of Virtual Work, it can be shown:

(ap} = 1/2 AxpAy sin(B-o)

sin®(8-0) [8]"[p][8] tawd

= [Ke] {au} (14)

in which { AP} is the vector of incremental nodal forces, [D] is

the matrix defined in Equation (3a), and 14 AXAY sin (8 —

«)

represents the volume of the basic medium element. Also, in the
above Equation (14), [ Ke] is clearly the stiffness matrix of the
non-orthogonal lumped-parameter medium element in global refer-

ence.

It is convenient to express the triple matrix product [B]'[D][B]
by representing the [B] matrix by its submatrices defined in Equa-

tion (12):

172y
[e] - sin(6-0)

= 1
rt P ot t
1721 I B1 DB : B1DB“ B1DB2

_nt; t tnn Lt
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b
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The Structure Model

The structure modeled for this study is a three-storey single-
bay plane rigid frame with basement. Discretization of the structure
locates the lumped masses at the actual joints as well as at con-
venient positions around the basement where the structure interacts
with the medium as shown in Fig. 5. The force and displacement
vectors are thus defined at these masses in the generalized co-
ordinates as shown in Fig. 14, and these vectors are related by the
generalized stiffness matrix of the structure. It is further as-
sumed that the elements are prismatic and uniform and that the
structure remains elastic throughout the entitre time of interest.

In addition to boundary constraints along the structure-medium
interface, other simplifications are made which make the calcula-
tions shorter. One of these assumptions is to neglect axial distor-
tions, which makes the number of constraint equations equal to the
number of structural elements. The shears and monents at the two
ends of an element i—j are related to the corresponding displace-
ments by:

— ) I - . —
r Vi % 3 T_6: 3 ( Uz )
I
|
£ -4 1 53
J_ru}_ Copr| 3 %L 3L Vi
- ?_ —Lr """" qo-mm——-- < -=== (16)
- {
— l
V. -6 6 0.
j T 31§ -3 Y5
|
!
M- [ V.
M; |3 L -3 2L (V)

where the quantities, of course, are in member (or local) co-
ordinates. In order to assemble the stiffness matrix, force and dis-
placement vectors of Equation (16) are transformed into the global
reference by means of a rotation matrix, and since force and dis-
placement vectors transform identically in rotation, we have:

F “sino 0]
X -sin a 0 — X B
y Y.
= cos a0 — pandqFy o= cosa 0}
z M
z 0 1 M o 1] L]
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o (17)
and - {Fy}.= [R]{Fy}
Equation (16) in global coordinates hecome:
( Fdi) g )
Fri N Vi
t ) RK t-‘
Mi | B3R RKGR 03
i dhdl I . Q=== > (18)
Bxj || /P Rk wt uj
J } LRKJlR : RK; ;R |
Fyj V5
[‘ Mj ‘ lej 7

The structure stiffness matrix is assembled by direct summa-
tion of the contributions of all the elements comprising the struc-
ture, and without any external constraints as yet provided, this
matrix is singular. If {Q) is a set of generalized nodal forces cor-
responding to the set of generalized nodal displacements [q}, the
generalized stiffness matrix relating these two sets of vectors [K*]
is square and of the order equal to the number of generalized co-
ordinates of interest. In this study, the number of generalized co-
ordinates, as shown in Fig. 14, for the coupled and the uncoupled
solutions, respectively, are 11 and 8.

Analysis Of Structure-Medium Interaction

In Fig. 5, the structure and the medium are assumed to be in
“welded contact” along their common interface and it is only in
this interface that internal interaction forces are assumed to be
developed to form the necessary coupling. By the use of the non-
orthogonal model, any boundary configuration may be formed, and
the applicability of the model is easily illustrated if a rectangular
area be assumed as the working space. It is ideal to locate the limit-
ing boundaries as far as practicable from the structure from the
structure in order to minimize, if not entirely eliminate, unwanted
reflections from these boundaries. On the other hand, distant limit-
ing planes mean more lumped masses and more degrees of freedom.
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In this investigation, a horizontal shear wave is generated from
the bottom boundary and the mass points on that plane are con-
strained from moving vertically while free to move in the x-direc-
tion. The mass points on the vertical side boundaries are constrained
from moving vertically and having the same horizontal motions as
the corresponding adjacent mass points.

At the interaction planes, it is assumed that there is no slipping
nor separation between the medium mass(es) and the correspond-
ing structure mass, and that each set of interacting masses possesses
two degrees of freedom because rotation of the masses due to the
deformation of the structure is neglected.

The equations of motion of the interacting masses in the gene-
ralized coordinate direction take the form:

(mm + ms)ﬁq + (RB + Rm) =0 (19)

where the structure resistance R, is derived from the shear in the
members and the medium resistance R,, is coming from the stress
point(s). As soon as the common acceleration ii, is determined, the
free-body diagram of either the structure or the medium mass will
illustrate the magnitude of the interaction force component.

The recursive equations for the present plane strain problems
are integrated numerically by computing the velocities and dis-
placements of the lumped masses from known, or otherwise assumed,
accelerations by the use of Newmark’s B-method equations:

ut 4+ At = ui + (1 - 'y)ﬁ:At + yii;'“tAt (20)

' = uli -+ Aui

uti + At = uil 4 u:At + (V5 — ,B)ﬁﬁAt—L’ + ,Bu:"'At At—:
= uit + Au

for any mass i. It is pointed out that y in the above Equations (20)
must be 1/2 if spurious oscillations are to be avoided. g is a para-
meter which defines the assumed shape of the acceleration-time
curve. For most structural applications, 8 equals 1/4 represents uni-
form acceleration within the time interval considered, such that the
value is equal to the arithmetic average of the acceleration at the
beginning and at the end of the interval; and 8 equals 1/6 is equiva-
lent to a straight-line variation of assumed acceleration. The clas-
sical theory of wave propagation in solids assumes that the velocity
of any point is zero until the wave reaches the point in question, at
which time, the velocity jumps instantaneously to a finite value.
It is therefore proposed that Bequals zero may give the closest ap-
proximation with the classical theory. The method is essentially an
iterative proceduie, but if g8 is assumed zero, which is done in this
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study, displacements are computed directly without iteration, while
velocities are integrated in a single iteration.

The numerical process also iequires that the space mesh and
time interval to be used in the computational scheme must meet
certain mathematical requirements necessary for stable calculations.
It is recommended that:

AX
At < 0707 — (21)
- 1
where At is the time interval selected, Ax is the space mesh size,
and C, is the dilatational wave velocity defined in Equation (7).

The key step in the modal method of dynamic analysis is be
done, equations of constraints must be independent, and sufficient
conditions must be present to prevent rigid body movements. This
will guarantee that the stiffness matrix of the structure is non-
singular and the determination of the mode shapes becomes a valid
eigenvalue problem. In the stiffness formulation, the generalized
determinantal equation derived from the equations of motion of
the undamped free vibration of the masses of the structure is:

[m]-* [k] {q) — w2 [q] =0O (22)

In the above Equation (22), [m] and [k] are respectively the
generalized mass matrix and generalized stiffness matrix, and w2
is a scalar constanfc.

The response spectrum gives the most comprehensive informa-
tion regarding maximum response in terms of dispacement, force,
acceleration, etc. of a linear one-degree-of-freedom system due to
a given input. Presently, the primary interest is that of ground
motion, and the maximum responses may be taken a sthe maximum
relative displacement between the mass and its support, the force in
the spring, or the absolute acceleration of the.mass. All of these
quantities are recognizably interrelated, but it is convenient to
plot the maximum response in terms of a quantity with the dimen-
sions of velocity. This so-called pseudo-velocity is plotted as ordi-
nates in logarithmic scale and the abscissa of the plot is the natural
frequency (or period) of the system. If the abscissa is also plotted

in logarithmic scale, the response spectra will show distinct charac-
teristics and general shapes.

THE NUMERICAL PROCESS

The main computer program is written in the POST* languate
with Fortran links. Auxiliary and support programs, including a
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plotting routine, are entirely in Fortran. Although there is no at-
tempt to duplicate exactly a particular medium such as soil, the
physical constants of the problem are assumed more or less in such
a way as to simplify the properties of the medium. After deciding
on the mesh size as required by stability and convergence require-
ments, the medium is divided into subregions to allow for greater
economy in core space in the computer. Member and mass incidences
are generated and finally, displacements, velocities, accelerations
and stresses are initially set to zero, and the stress points are con-
sidered elastic. Boundary conditions are imposed on appropriate
mass points.

A typical cycle of operation starts when all physical quan-
tities are assumed or are known at a certain time. The numerical
solution is carried out in incremental fashion during successive
time intervals of At. The incremental change in the input quantity
itself is interpolated for the interval, and incremental changes in
the velocity and displacement are integrated. The strain-displace-
ment relations of quation (11) give the incremental changes in the
strains; relations between stresses and strains according to Equation
(3a) give the incremental changes in stresses. Knowing the stresses,
the resistances can be calculated. Finally, the equations of motion
determine the accelerations of the masses in incremental fashion
also. At the end of the cycle, all response quantities are updated

such that:

Present ] Previous 1 Incremental change for the
Quantity equa’s Quantity present time interval

Shears, bending moments and point rotations for the structure
are solved by means of back substitution formulas. All updated
quantities are compared to their values before the present time in-
terval, and in this way, maximum magnitudes are determined.
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