RADIOACTIVE WASTE MANAGEMENT FOR NUCLEAR POWER PLANTS

CHARLES A. WILLIS Nuclear Reactor Safety Expert International Atomic Energy Agency

8 August 1979

Seminar for Mechanical Engineering Teachers De La Salle University Manila

I. Functions

- A. Control Wastes
- B. Measure Releases
- C. Control Releases to "As Low as Reasonably Achievable"

II. Liquid Waste System

- A. Boron Recycle System (Augments LWS)
- B. Train A (Tritiated aerated water)
 - 1. Sources: Drain Header & Sample room sinks
 - 2. Waste Holdup tank
 - 3. Waste Evaporator
 - 4. Waste Evaporator Demineralizer
 - 5. Filter
 - 6. Waste Condensate Tank
 - 7. Pump
 - 8. To: R Makeup, Boron Recycle or waste Holdup tank

C. Train B (Non-reactor grate water)

- 1. Sources: Floor drain header & Bldg., pumps
- 2. Floor drain tanks
- 3. Pump
- 4. Skimmer
- 5. Filter
- 6. Waste Evaporator
- 7. Waste Evaporator Demineralizer
- 8. Filter
- 9. Waste Monitor tank demineralizer

- 10. Filter
- 11. Waste Monitor Tank 2
- 12. Pump
- 13. Radiation
- 14. Discharge

D. Chemical Wastes

- 1. Source: Spent samples
- 2. Chemical Drain tank
- 3. Pump
- 4. To: Spent Sampling Package

E. Detergent Wastes

1. Source: Laundry, handwash & hot shower drains

7.7 .

- 2. Laundry & Hot Shower Drain tank
- 3. Pump
- 4. Skimmer
- 5. Filter
- 6. Waste monitor tank 1
- 7. Pump
- 8. Radiation monitor
- 9. Discharge

F. Spent Resin Waste

- Source demineralizers: Waste monitor tank, CVS mixed bed, B Recycle evaporator feed, CVSS cation bed, B Recycle condensate, Spent Fuel pit, Waste evaporator
- 2. Spent resin storage tank
- 3. Pump
- 4. Filter
- 5. To: Resin packaging

III. Gaseous Waste System

A. Gaseous Waste Processing System

- 1. Sources: Volume control tank, recycle evaporator vent, condenser, waste evaporator vent, condenser, recycle hold-up tank, RC drain tank
- 2. Compressors
- 3. Catalytic recombiners
- 4. Gas decay tank
- 5. Return to CVCS

B. HVAC (Section 9.4)

IV. Solid Radioactive Wastes System

A. Principal solid wastes

- 1. Spent demineralizer resins
- 2. Evaporator bottoms
- 3. Chemical drain tank contents
- 4. Spent filter cartridges
- 5. Miscellaneous, compressible & incompressible

B. Solidification process

- 1. 300 gal. holdup tanks
- 2. Pumps
- 3. Cement mixer & feeder
- 4. Chemical addition system
- 5. Drum loading sleeve
- 6. Container cart
- 7. Overhead crane (7.5 tons)
- 8. Drum capping machine
- 9. Container "swipe" tool
- 10. 55 gallon drums
- C. Filters: Filter transfer shield assembly
- D. Miscellaneous compressible: hydraulic valve

V. Review Concerns

A. Source Terms

- 1. Are parameters used consistent with NUREG-0016?
- 2. All potential release points detailed
 - a. Concentrations in primary coolant; fission products and others
 - b. Leak points and rate
 - c. Gaseous wastes: noble gases, radioiodine, carbon-14
 - d. Gaseous waste sources: SG blowdown, main condenser, leakage to containment, fuel handling system, turbine bldg., gases stripped from coolant and cover and vent gases
 - e. Liquid wastes: primary coolant (shim bleed), drains SG blowdown, condensate demineralizer regenerant solutions, resin sluees, filter backwashes, decon solutions, samples, and detergent wastes.
- 3. Volumes and radiation levels consistent with NUREG-0016

4. Decontamination factors (Iodine removal, HEPA filters, etc.) consistent with NUREG-0016

B. Liquid Waste Management Systems

- 1. Meet 10CFR 20 and 10CFR 50 appendix d
 - a. Off site annual doses less than 3 mrem WB and 10 mrem to any organ
 - b. Include all cost-effective controls (\$1000 per manrem or thyroid rem)
 - c. 10CFR 20 limits met
- 2. Capacity meets requirements
 - a. Single Failure
 - b. Operations generation excessive waste
 - c. Design basis leakage levels (1%)
- 3. Meet seismic quality requirements of RG 1.143
- 4. Operability and maintainability, RG 1.143
- 5. Design, construct and test to code (ASME II, VIII and X; ANSI 31.1)
- 6. Tanks must have:
 - a. Liquid level monitors and alarms
 - b. Overflows, sample and drain lines to LRTS
 - c. Curbs, dikes or retention ponds

C. Gaseous Waste Management System

- 1. Meet 10CFR 20 and 10CFR 50 Appendix d
 - a. Off site annual doses less than 5 mrem WB or 15 mrem skin
 - b. Particulate annual dose commitment less than 15 mrem, and organ
 - c. Include all cost-effective controls
 - d. Meet 10CFR 20 limits
- 2. Capacity meets requirements
- 3. Seismic and quality requirements
- 4. Operability, Maintainability and leakage control
- 5. HEPA filter and Charcoal adsorbers testing, etc. RG 1.140
- 6. Withstand or prevent H explosion
 - a. Withstand means 20 times operation pressure
 - b. Prevention requires dual gas analyzers, alarmed

D. Solid Waste Management Systems

- 1. Adequate capacity based on experience and source terms
- 2. Solidify all wet wastes before shipment
- 3. Shipping containers meet 10CFR 71

- 4. Adequate on site storage
- 5. Piping meets criteria for liquid systems

E. Monitoring and Sampling Systems

- 1. Sample of Monitor all releases
- 2. Sample of Monitor all tanks prior to release
- 3. Sample of Monitor in accordance with GDC 63
 - a. Representative samples
 - b. Central collection point for leakage and exposure control
 - c. Proper disposal of samples
- 4. Instrumentation, frequency, set points etc. meet RG 1.21 (FSAR)
- 5. Isolation valves fail closed
- 6. Monitor releases is postulated accidents; RG 1.97 and Draft ANSI Standard N13/42 WG6
- 7. Liquid releases automatically terminated if limits exceeded

FATALITIES IN SOME MAJOR DISASTERS

Natural Disasters

Epidemic and Famine Bubonic Plague, Europe 1340's Influenza, World, 1917-1919 Influenza and famine, Russia 1914-24	25 million 25 million 20 million
Floods and Storms China, 1851-66 China, 1887 Holland, 1530	40 million 1.5 million .4 million
Earthquake China, 1556 China, 1976 India, 1737	830 thousand 655 thousand 300 thousand
Fire Moscow, 1570 Japan, 1923 (earthquake) Tokyo, 1857 (earthquake)	200 thousand 140 thousand 107 thousand
Avalanche and Landslide China, 1920 Tyrol, 1915-18 Peru, 1962 (worst single)	180 thousand 40 to 80 thousand 4 thousand

Volcano		
Unsen, Japan, 1793	53	thousand
Krakatoa, 1883	.40	thousand
Pelee, Martinique, 1902	33	thousand
Technological		
Marine		
Spanish armada, 1588	4 to 10	thousand
Royal Navy, 1782	3.5	thousand
St. George and Defiance 1811	2	thousand
Explosion		
Gunpowder, Brescia 1969	3	thousand
Ammunition, China, 1935	2	thousand
Ammunition, Belguim, 1918	1.8	thousand
Mine		
Manchuria, 1931	3	thousand
Manchuria, 1942	1549	
France, 1906	1060	
Rail		
Spain, 1944	650	
France, 1917	550	
Italy, 1944 (Suffocation)	521	
West Pakistan, 1957	300	
Aircraft		
Boeing 747's Canary Islands, 1977	582	
DC-10, Paris, 1974	346	
DC-8, Sri Lanka, 1974	191	
Radiation Associated		
Theoretical		
1957 Calculation (WASH 740), Maximum	3400	
1957 Calculations (WASH 1400)	1400	
Real		
Cleveland, 1925, X-ray film fire	125	
Mexico, 1960, Lost Co-60 source	5	
Idaho, 1961, SL-1 accident	3	

(From: C.A. Willis, J. Korean Nuclear Society, March 1975, Revised)

REFERENCES

- 1. PNPP-1 Preliminary Safety Analysis Report, Chapter 11.
- 2. NUREG-75/087 Standard Review Plan
 - 11.1 Source Terms
 - 11.2 Liquid Waste Management Systems
 - 11.3 Gaseous Waste Management Systems
 - 11.4 Solid Waste Management Systems
 - 11.5 Process and Effluent Radiological Monitoring and Samplign Systems
 - Branch Technical Position ETSB 11-1 (Rev. 1) "Design Guidance for Radioactive Waste Management Systems Installed in LWC NPP"
 - BTP 11-3 (Rev. 1) "Design Guidance for Solid Radioactive Waste Management Systems Installed in LWC NPP"

3. Regulatory Guides

- 1.21 "Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from LWC NPP" (wet with exception)*
- 1.97 "Instrumentation for LWC NPP to Acess Plant Conditions During and Following an Accident" (alternative under review)*
- 1.112 "Calculation of Releases of Radioactive Materials in Liquid Effluent from LWC Power Reactors" (met in ER)*
- 1.140 "Design, Testing and Maintenance Criteria for Normal Ventilation Exhaust System Air Filtration and adsorption Units of LWC NPP" (not addressed)*
- 1.143 "Design Guidance for Radioactive Waste Management Systems, Structures and Components in LWC NPP" (not addressed)*
- 4.15 "Quality Assurance for Radiological Monitoring Programs (Normal Operation) Effluent Streams and the Environment" (not addressed)*

4. General Design Criteria

- 60. "Control of Releases of Radioactive Material to the Environment"
- 63. "Monitoring Fuel and Waste Storage"
- 64. "Monitoring Radioactive Releases"

^{*} Degree of Compliance on PNPP-1.

- 5. NUREG Reports
 - 0016 "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Boiling Water Reactors" (BWR GALE Code)
 - 0017 "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressureized Water Reactors" (PWR GALE Code)
- 6. Regulations
 - 10 CFR 20. "Standards for Protection Against Radiation"
 - 10 CFR 50. "Licensing of Production and Utilization Facilities"
 Appendix A. "General Design Criteria for NPP"
 (PAEC Reg. Appendix B)
 - Appendix I. "Numerical Guides for Design Objectives and Limiting Conditions to Meet the Criterion 'as Low as Practicable for Radioactive Material in LWC NPR Effluents"
 - 10 CRF 51. "Licensing and Regulatory Policy and Procedures for Environmental Protection" (PAEC Environmental Guide)
 - 10 CFR 71. "Packaging of Radioactive Material for Transport and Transportation of Radioactive Material Under Certain Conditions"
- 7. American National Standards Institute (ANSI) Standards
 ANSI-N 13.1-169, "Guide to Sampling Airborne Radioactive
 Material in Nuclear Facilities."
 - ANSI-N 13/42 WG6, Draft, "Performance Specifications for Reactor Emergency Monitoring Instrumentation (1974)
 - ANSI N13.10-1974, "Specification and Performance of On-site Instrumentation for Continuously Monitoring Radioactivity in Effluents"
 - ANSI N137 draft "Source Term Specifications," April 1976
- 8. WCAP-8253 Rev. 1 "Source Term Data for Westinghouse Pressurized Water Reactors." June 1974

REFERENCES

- 1. Peter Beckmann, The Health Hazards of NOT Going Nuclear, Golem Press, Boulder, Colo. U.S.A. 1976
- 2. B. Cohen, "Environmental Hazards of Radioactive Waste Disposal," *Physics Today*, Vol. 29, No. 9, Jan. 1976

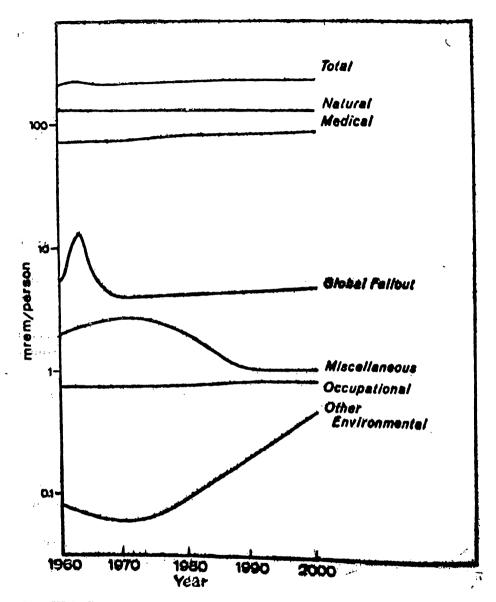
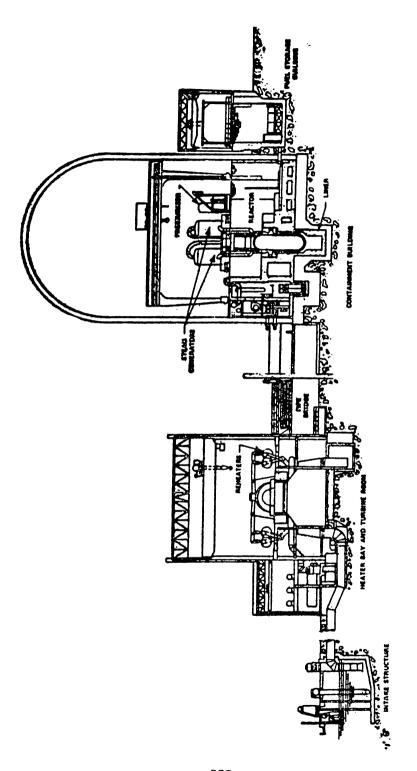
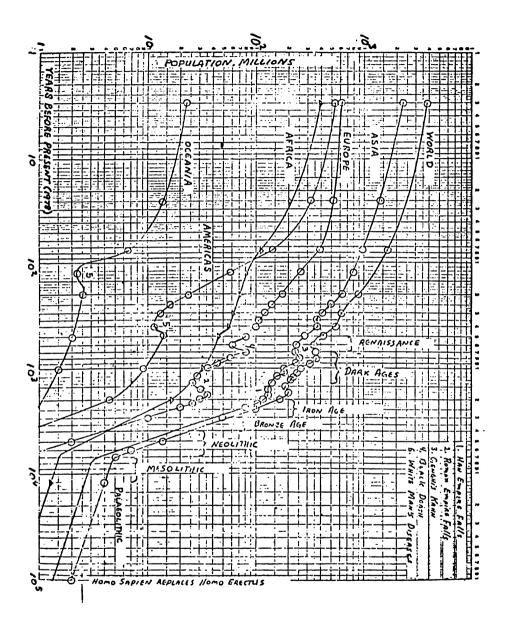




Fig. VI-2. Summary of Estimated Average Whole-body Radiation Doses in the United States (m rem/person).

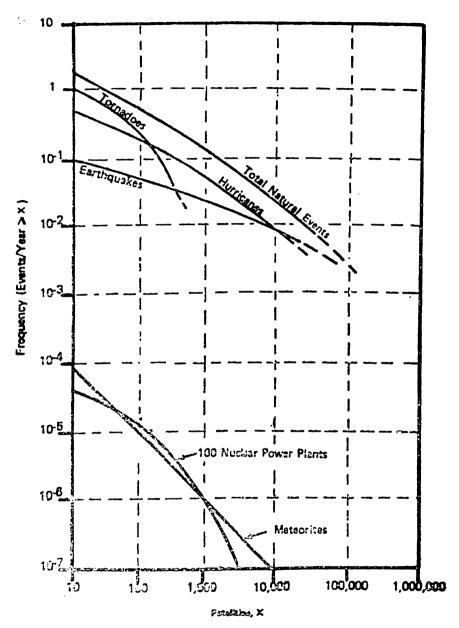


Fig. 6-2. Frequency of Natural Events Involving Fatalities.