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Abstract— The aim of this research is to implement an optimized hybrid fuzzy-neural (FN) algorithm for an 

autonomous electric vehicle’s stop-and-go decision-making and control. Four (4) different algorithms (purely 

fuzzy logic (FL), one (1) hidden layer (H1) FN, two (2) hidden layers (H2) FN, and purely neural network (NN)) 

were deployed in a buggy-type electric vehicle (EV) to compare their performances in real road conditions. The 

test EV was equipped with a LiDAR Lite sensor which served as the range finder to measure headway distance 

while an optical flow sensor and the motor’s built-in hall sensors were used to measure speed. The EV was also 

retrofitted with a dsPIC30F4011 microcontroller for processing and control. Both indoor and outdoor road tests 

were conducted to compare the difference between a controlled environment (well-lit with good road conditions) 

versus actual road conditions (including physical limitations), respectively. It was observed in the indoor tests 

that increasing the hidden layers from H1 to H2 made the algorithm more robust and decreased jerking 

phenomenon when the vehicle was stationary. Results from the outdoor tests also revealed that FN network with 

H2 (successful in eight (8) out of ten (10) runs) had better control in maintaining proper headway distance and 

more fluid transition in acceleration and deceleration. Hardware considerations were also outlined focusing on 

deploying machine learning codes and weights to a microcontroller. The ~56kB initial code size was way above 

the allowable 48kB program memory of the microcontroller therefore the data type of the weights were changed 

to shrink the code to ~38kB. 
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I. INTRODUCTION 

 

The substantial increase in traffic congestion in the country has been a major concern due 

to its negative impacts such as delays, unnecessary length of time on the road, high fuel 

consumption, wear and tear of vehicles, and as well as stress and frustration for motorists which 

often lead to road rage. 

 

Autonomous vehicular control systems and traffic management algorithms can ease up 

traffic in any roadway. Numerous proposals in traffic management, both macroscopic and 

microscopic [1], have been presented in other papers in recent years but were usually done in 

simulation. These algorithms must be translated to physical verifications and control system 

analyses [2] to account for other phenomena that cannot be observed in simulations. 
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Early models developed in vehicular modeling were the Stimuli-Response [3], Action Point 

and Safety-distance [4], and optimal velocity [5]. These microscopic approaches describe 

vehicular movements and decision-making . These methods focus on the stop-and-go  

movements of the vehicle in control. As technology advancements became more available to 

researchers, macroscopic approaches to traffic management emerged. Cellular Automata [6] 

and Trajectory-based  [7] models were among the early models describing vehicular interaction 

in a third-person  perspective resulting in  increased efficiency of acceleration. These models 

do not depend on a single vehicle’s parameters but also factor in all the other vehicle’s 

parameters in the given system. 

 

Many advancements in autonomous electric vehicle’s (EV’s) stop-and-go  decision-making  

models could be seen in recent literature  [8] [9]. Basic neural networks were usually used in 

specific roles like in the prediction  of vehicle conflicts [10] [11] or actively controlling specific 

mechanical parts of vehicles [12] [13]. There were also advancements in research in electric 

vehicles being autonomous but connected [14] [15] at the same time. These different models 

can be attributed to various machine learning techniques and method variations and adoptions 

consequently applied to distinct roles or applications. However, only a few studies reached the 

implementation stage and used real-world data for their training and validation tests.  

 

A fuzzy logic (FL) inference system has been applied to various control processes such as 

powertrain controllers to optimize fuel consumption [16] or using a manipulator control for 

navigation [17]. Likewise, artificial neural networks (NNs) were applied to autonomous 

driving or vehicles for safe lane-changing models [18] or pedestrian-vehicle conflict 

predictions [19]. Literature also established a lot of alterations and a mix of fuzzy-neural (FN) 

networks that worked with a four-wheel-steering vehicle [20], a variety of unmanned aerial, 

underwater, and floating drones, and even hypersonic vehicles [21]. Even intelligent cruise 

control in highways can be implemented with FN controllers [22]. It used a base structure of 

an FL inference system to either mimic an expert system or an arbitrary control program 

wherein the defuzzification part was replaced with a neural network hidden layer or layers. 

Thus, this enhanced the strength of both algorithms; FL with machine interpretation of 

independent variables and NN with processing data to recognize trends [23]. 

 

An FN algorithm was then proposed for development and optimization then compared its 

performance to both purely FL and NN algorithms. Movements from EVs driven by 

experienced e-trike drivers were gathered and used as the expert system training dataset for 

algorithm optimization. An EV buggy fabricated at the Electrical and Electronics Engineering 

Institute (EEEI) of the University of the Philippines Diliman (UPD) was retrofitted with 

fabricated sensor modules and microcontroller board. Testing was confined inside the 

university’s premises for road safety. 
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II. METHODOLOGY 

 

2.1 Optimized Algorithm and Simulated Driving 

Four (4) algorithms namely: an FL controller, two derivations of an FN algorithm – a single 

hidden layer (H1) and two (2) hidden layer (H2) FN topologies, and a fully-connected NN were 

developed to test different EV performances and to observe the following vehicle’s (FV’s) 

algorithmic response to the lead vehicle (LV). The assumed target behavior was that the FV 

must maintain a certain distance from the LV. All algorithms were created to have two (2) inputs 

(relative velocities (RV) and headway clearance or distance divergence (DSSD – distance sum 

of squared difference)) and one output (Acceleration). 

 

The FL inference system established had five (5) membership functions (MF) per input. The 

MF for the DSSD were much too close (MTC), too close (TC), okay (K), too far (TF), and much 

too far (MTF). On the other hand, the MF for RV were closing fast (CF), closing (CL), match 

(Z), opening (OP), and opening fast (OF). These MF were relatively observable behavior of the 

distance headway and relative velocity between the LV and FV. These MF were then fed to 25 

rule-based inference nodes to map out the interaction of the different MFs of an input to the 

other input variables. A Dombi t-norm, known for its high classification accuracy and easier 

code implementation [24], was used on each inference to determine the minimum value of the 

antecedents. This inference determines the different scenarios the system responds to. After the 

inference part of the algorithm, the results from the rule-based inference nodes were then 

collected in a defuzzifying node. This node took into consideration the supposed different 

reaction of the system to the input it was presented with. The activation function used was a 

TSK (Takagi-Sugeno-Kang) function so that the acceleration was interpreted by crisp output 

values [25] [26]. The defuzzification outputs the response of the system in terms of acceleration 

in five (5) different singleton values: strong acceleration (SA), light acceleration (LA), constant 

acceleration (C), light deceleration (LD), and strong deceleration (SD). These output 

accelerations were the responses of the EV (the FV in the setup) to maintain a good headway 

from the LV. Table 1 shows the acceleration rule matrix of the FL system while Figure 1 shows 

the three-dimensional representation of MF values highlighting the acceleration values in the 

range of input MFs. The resulting FL system architecture is shown in Figure 2 to illustrate the 

connection between nodes and phases. 

 

 

Table 1. Rule-based Inference used for the Fuzzy Logic controller 

Acceleration 
RV 

CF CL Z OP OF 

DSSD 

MTF C LA LA SA SA 

TF C C LA LA SA 

K LD C C C LA 

TC SD LD LD C C 

MTC SD SD LD LD C 
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Figure 1. A three dimension graphical representation of the interaction between the inputs 

(DSSD and RV) to its output (acceleration) 

 

  

 
Figure 2. Fuzzy Logic controller that takes in DSSD and RV as inputs and outputs ACC 

showing the connection and process of the inference 

 

 

An FN network was then developed from the FL system discussed above. The defuzzifying 

node was replaced with a hidden layer of NN. The idea was to replace the centralized 

defuzzifying function with smaller decentralized processes [8] [27]. To match the 25 rule-based 

inference, a single hidden layer of 25 nodes was attached in place of the defuzzifying node. 

Another hidden layer was added to increase learning capability, but this also increased the 

computational burden on the processing module. The second hidden layer was structured with 

15 nodes that is fully connected to the first hidden layer. Figure 3 shows both the H1 and H2 

FN architectures to highlight the connection of each node from layer to layer. 
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Figure 3. Proposed Fuzzy-Neural Networks with one hidden layer (left) and with two hidden 

layers (right) to be deployed to the EV 

 

 

A fully connected neural network was then developed to serve as the baseline with the FL-

only algorithm of the study as adapted from [11]. A two (2) hidden layer with five (5) nodes 

each was adapted to accept the RV and DSSD as inputs and acceleration as its output. The 

network is shown in Figure 4. 

 

 

 
Figure 4. A fully connected Artificial Neural Network with two hidden layers used as a 

baseline parallel to the fuzzy logic only algorithm 

 

 

The algorithms (FL, H1, H2, and NN) were then trained, validated, and tested with a total of 

2744 data points gathered from seven (7) UPD e-trike drivers with a variety of EV driving 

experiences. The methodology and characterization of the data set was outlined in a previous 

publication [28]. Fifty  percent (50%) of the data set was delegated for training, twenty-five 

percent (25 %) for validation, and the remaining twenty-five percent (25% ) for the test set. This 

was arbitrarily set for ease of dividing the total data points. A sample of the data collected from 

two (2) e-trike drivers can be seen in Figure 5. Results show how driver three (3)  was more 

defensive in driving and maintaining the e- trike’s headway clearance while driver seven (7 ) 

was more aggressive as evident in the clustering of data points to stopping than maintaining 

velocity at a distance. 

 

The algorithms’ weights were then optimized at selected hyperparameters: starting random 

weights W1 (from negative one to positive one) and W2 (from negative two to positive two), 

learning rates Co (constant) and De (decaying), and batch processing Ba (full batch) and mB 
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(minibatch). These hyperparameters then multiplied all network algorithms (all algorithms 

except the purely fuzzy logic controller) into eight (8) variations each. 

   

 

 
Figure 5.  Sample data set from driver 3 and driver 7 showing difference in driving preference 

 

 

Consequently, these algorithms were subjected to situational simulations and were then 

culled. Those variations of algorithms that were not able to maintain a head way (crashed) with 

the LV were removed from the list to be tested in hardware. Figure 6 shows a sample of failed 

and successful simulation runs. The selected optimized parameters after the simulations were 

W1CoBa, W1DeBa, W2DeBa, and W1ComB. These four (4) optimized parameters were used 

for the three (3) neural network topologies (NN, H1, and H2) and were benchmarked against 
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the FL-only algorithm. A total of 13 optimized algorithms were loaded to the fabricated EV 

buggy for hardware indoor testing and verification in actual road conditions. 

 

   

Figure 6. Sample simulation runs of a crashed FV failing to maintain headway from LV (left) 

and a successful simulation (right). 

 

 

2.2 Hardware Design 

An autonomous EV was built at the Robotics Automation Laboratory at EEEI, UPD. The 

EV was at its early stages and had the essential car parts only as seen in Figure 7. The EV buggy 

was 2.3m long by 1.2m wide by 1.4m tall. It was retrofitted with a microcontroller for the test 

algorithms and an array of sensors to collect input data. 

 

  

 
Figure 7. Fabricated EV’s frame with the essential car parts only: chassis, in-tire motors, 

battery packs, and controller. 
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A dsPIC30F4011 Microchip controller was used to control motor speed, gather data from 

the sensors, and house the test algorithms. It used a C compiler optimized instruction set 

architecture and dedicated 24-bit wide instructions and 16-bit wide data path [29]. The 

controller was selected due to multiple attributes. The EV’s power supply will be dependent on 

a battery pack that provides power to the controller and motors. The selected controller has a 

wide operating voltage range (2.5V to 5.5V) which would accommodate the voltage swings due 

to the motor transient demands. The controller also offers a variety of timer modules and 

multiple duty cycle generators with a 10MHz oscillator.  With the primary oscillator selected, 

an x16 multiplier (XT w/PLL 16x) was used to bring the clock speed to 140MHz. This was also 

important due to the multiple sensors data that the controller needs in order analyze the 

optimized test algorithms. Three (3) different timers (from two (2) independent 16bit timers) 

were also used to support different parts of the algorithm: the first one for the main code and 

the other two (2) for the different interrupt flags. These timers and flags were important to make 

sure the sensors could signal to the EV if it needs to stop for its safety. The microcontroller must 

also support multiple communication protocols (SPI, I2C, etc .) which must be flexible enough 

to adapt to a sensor’s needs. The controller also offers a 10-bit analog-to-digital module, PWM-

able pins, and sufficient digital and analog pins to support the designed hardware’s framework.  

The hardware’s block diagram can be seen in Figure 8. The figure shows the control and data 

flow of the system. 

  

 

 
Figure 8. The hardware’s block diagram showing the connection of the different parts of the 

system. 

 

 

The hardware’s framework was clustered into three (3) main parts: the sensors, the actuators, 

and the main board. The sensors were a LiDAR range finder, an optical flow sensor, and the 

built-in hall sensors in the tires. These sensors continuously fed data to the microcontroller. 

With timed intervals, the microcontroller selects which sensor to read and process.  

 

The actuators were mainly the motor drivers which controls the wheels directly. There were 

two (2) 1kW 60V brushless DC (BLDC) motors with 1.32m wheel circumference that were 

equipped with hall effect sensors. The motors were controlled by varying the resistance in 
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parallel with the input terminals. This was done using X9C103 digital potentiometers operated 

by the microcontroller. The main switch for the motor drivers was a KZJ60VDC main relay 

contactor. The other central components of the framework were the microcontroller and power 

management block. A battery array of three (3) 100Ah and two (2) 60Ah Sinobatt batteries were 

loaded into the EV buggy. An output monitor was added to serve as a realtime data display. 

 

Input data, DSSD and RV, were derived by measuring the headway between the FV and LV 

and determining the FV’s velocity with respect to the LV’s velocity, respectively. For the 

Headway, the LiDAR-lite v1 was used to determine the distance between the LV and FV. 

LiDAR emits a laser and clocks how long it takes the laser to get back to the LiDAR. The 

measured time was then multiplied with the speed of the laser. All these computations were 

done inside the LiDAR and the acquired data from the LiDAR to the microcontroller were set 

as raw measured distance.  It operated at 5V nominal input voltage which was the same as the 

hardware system developed. The datasheet specified that it has a maximum range of 40m under 

typical conditions. However, field testing indicated that it can only accurately measure up to 

30-35m. This was placed at 0.2m indented in front of the test EV. This ensured that the lidar 

was over the ~0.2m minimum distance requirement. Some errors in reading the LiDAR were 

observed during the fabrication and trial phases. Troubleshooting of the LiDAR was mostly 

focused on the communication side, mounting design, and laser feedback. The communication 

between the microcontroller and the LiDAR should be initially calibrated correctly to match 

clock timing. The mounting of the LiDAR on the EV was originally at the angle of horizon (at 

0 degrees) and 0.3m above the ground. 

 

A redundancy setup of an optical flow sensor and the built-in hall sensors of the motors were 

used for the FV’s velocity determination. The ADNS3080 Optical Flow Sensor was calibrated 

with the height of 0.2m from the ground (it was placed higher than recommended to protect the 

sensors from the road conditions of the tests). The electric wheels used on the EV has built-in 

hall sensors that return pulses as magnetic poles in the tires which passes through the sensor. It 

was observed that the optical flow sensor’s data reliability was dependent on the lighting 

condition and the texture of the road. The hall sensors’ data were observed to be unreliable on 

abrupt changes in acceleration. The hall sensors have slow reaction outputs to the sudden 

changes in acceleration thus the data seemed to be unreliable. The two  (2) sensors were used 

to complement each other’s data due to inherent flaws in each other’s means of measuring. A 

simple algorithm was developed to achieve this. It was observed that most of the time, the two  

(2) sensors gave the same data. But the abrupt changes in velocity and acceleration tend to give 

hall sensors a momentary false data. While certain areas in the Outdoor Test rendered the optical 

flow sensor a null output except for slow velocities. The redundancy of the two sensors gave 

the system more precise measurements of the data needed for the algorithm’s optimizations. 

 

2.3 Conditions for road testing 

The EV loaded with the optimized algorithms were then tested to react or follow an LV in 

an indoor and an outdoor track. The four (4) algorithms calibrated with the four (4) optimized 

hyperparameters (except for the FL-only algorithm) were uploaded into the microcontroller for 

indoor road testing. 
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The indoor test was designed to simulate good road conditions with 10m road length. The 

road track was well lit, relatively clean of dust and dirt, and leveled. The sufficient lighting of 

the track was for the optical flow sensor. Road markers were placed on the tracks as reference 

frames to verify velocity and acceleration observations as seen in Figure 9. An obstacle was 

placed at the 8m mark to simulate enough clearance for acceleration then followed by an 

expected deceleration and eventual braking. All tests were done with five (5) trials each with 

the acceleration of the EV recorded (the minimum and maximum accelerations were noted). 

The indoor test was implemented in the High Voltage Laboratory at the EEEI. 

 

  

 
Figure 9. A snippet from the recordings of an indoor test showing the road markings in the 

indoor test 

 

 

Results from the indoor tests determined the performance and appropriate optimized 

hyperparameters used in the outdoor tests. The algorithm variation with the greatest number of 

successes (stopped at appropriate stopping distance) and the best driving experience (realistic 

acceleration and deceleration profile) was chosen to move on to the next testing phase. 

 

The outdoor testing, on the other hand, was done in the parking lot and around the EEEI 

building. The indoor test’s setup was replicated (10m track with an obstacle at the 8m mark). 

The test was designed to imitate real road conditions with unpredictable lighting intensities and 

imperfect and unleveled paved cement conditions. The variability of the sensors’ input values 
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due to real-world factors were critical in determining the robustness of the algorithms and its 

optimized parameters. All neural network topology outdoor tests were done with eight (8) trials 

each while the FL topology with only four (4) trials. 

 

 

III. RESULTS AND ANALYSIS 

 

3.1 Indoor Tests 

Table 2 summarizes the result of the indoor tests. The first column shows the different 

algorithms and parameters tested. The second column indicates the result of the tests as either 

success, failed, or close. A close result means that the stopping distance of the EV is too close 

(based on data gathered from the e-trike drivers) to the obstacle therefore cannot be defined as 

success nor failure. The third and fourth columns are the maximum and minimum acceleration 

of the EV as recorded, respectively.  

 

As the indoor tests indicated, out of 13 algorithms: six (6) failed, five (5) were close, and 

only one (1) was a complete success. 

 

 

Table 2. Summary of Indoor Tests Results 

Algorithm Outcome Max Acc 

(m/s2) 

Min Acc 

(m/s2) 

DeFuzz success 0.28 -0.7339 

W1CoBa FN1 close 0.06 -0.2796 

FN2 failed 0.13 0 

NN failed 0.16 0 

W1DeBa FN1 close 0.05 -0.3297 

FN2 close 0.06 -0.2675 

NN failed 0.23 0 

W2DeBa FN1 close 0.12 -0.2093 

FN2 close 0.09 -0.2693 

NN failed 0.48 -0.0293 

W1ComB FN1 failed 0 0 

FN2 close 0.21 -0.1531 

NN failed 0.14 0 

 

 

The only complete success recorded was the FL algorithm. This can be expected because of 

the straightforward mathematical approach of the algorithm of the TSK framework which gave 

out crisp outputs [11]. As long as the input of the system was defined and was within the 

parameters, the FL remained robust and predictable [27]. It should also be noted that the 

acceleration and deceleration values’ swing was too large – the EV would accelerate fast and 

decelerate abruptly providing an unpleasant driving experience. 
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All NN algorithms (across all variations) failed. This might be due to lack of hidden nodes 

[30] as this topology gave the largest acceleration but gave the least deceleration in each 

grouping. Though the topology and parameters converged during training and passed simulation 

tests, the real-world instrumentation delay might have taken a larger factor in the failure of the 

implementation of the algorithm.  

 

Both FN algorithms had a three (3) out of four (4) success rates, across different parameters, 

but are too close than the expected stopping distance. These could also be attributed to 

instrumentation delay. 

 

It was also observed that the static friction played a huge role in the failed tests. The minimum 

voltage for the motor to move was 0.25V but it was observed that the EV would not move until 

it was at 0.5-0.75V. This attributed to a faster starting torque (because of larger current in the 

excitation coils) and would sometimes hinder the EV from braking before the runway run out. 

It was also observed that, sometimes when the surface of the obstruction was subjected to 

intense lighting conditions, the LiDAR sensor does not see the surface. This might be 

problematic with bare aluminum vehicle surfaces – like jeepneys. 

 

It was then decided to use W1DeBa for the outdoor tests because it has the highest success 

rate. W2DeBa has the same performance with W1DeBa as expected because they had the same 

hyperparameters setting: Decaying learning rate with Batch processing. The only difference 

was that W1 has a negative two (-2) to positive two (+2) random starting weights than the W2 

which has a negative one (-1) to positive one (+1) random starting weights. 

 

3.2 Outdoor Tests 

The autonomous EV buggy was then subjected to real-world road conditions (inside the 

campus) compared to the indoor tests which had controlled illumination and road conditions. 

Table 3 summarizes the result of the outdoor tests. Variation in lighting conditions from good 

to poor was observed due to trees covering the tracks. 

 

 

Table 3. Summary of outdoor tests results for different algorithms 

 

 T1 T2 T3 T4 T5 T6 T7 T8 

D
eF

u
zz

 INC 

TEST 
jerking 

INC 

TEST 
jerking         

success success success success     

H
1

 maintains 

800 

maintains 

200 

maintains 

500 

maintains 

500 

maintains 

800 
CRASHED 0 Too near 

success success success success success Failed success success 

H
2
 maintains 

800 
0 0 

INC 

TEST 

INC 

TEST 
0 0 0 

success success success INVALID INVALID success success success 

N
N

 INC 

TEST 
Too near 0 0 0 0 0 

Stop and 

Go Prob 

success success Failed success Failed Failed success Failed 
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For the outdoor tests, besides the success or failure of the tests, notes were incorporated in 

the table. A “maintains –” was noted for successful tests. A successful test means that the EV 

stopped at the appropriate stopping distance as indicated by the algorithm. “INC TEST” means 

that instrumentation errors were noted but is not related to the success of the stopping of the EV 

(i.e. error in sensor readings). “Jerking” and not being able to “Stop and Go” were also recorded. 

These problems may or may not be related to the algorithm. It could be an error in the output of 

the algorithm due to the erratic output values or an error due to the instrumentation problem in 

the motor. A “too near” and “crashed” notes were also indicated just like in the indoor tests’ 

results.  A “0” in the notes would mean nothing significant could be noted but the test ran 

smoothly. 

 

The FL algorithm’s performance in the outdoor tests showed correct stopping and 

acceleration responses. However, jerking was observed even during standstill. The crisp output 

values became a liability in the real-world feel of the driver as it lacks fluid transition from one 

acceleration value to deceleration [11] [31]. The outdoor tests with the FL algorithm were 

discontinued after the fourth (4th ) test due to the instability of the EV’s throttle (due to jerking). 

 

The H1 algorithm passed all its runs except for one (1). It should be noted that the 

performance of the EV due to the algorithm cannot maintain a consistent headway. It can be 

attributed to sensor reading error or to the algorithm’s performance. The driving experience 

with the H1 was not comfortable. The accelerations were too fast while decelerations were too 

late resulting to smaller headway clearance after stopping. 

 

The H2 algorithm passed all its test runs. It must be noted that two of its runs were declared 

as invalid due to NaN output values recorded in the voltage applied to the motor. 

 

The purely NN algorithm passed and failed its tests equally. Jerking was also observed; like 

in the FL algorithm driving experience. Detailed data showed that the LiDAR detected the 

obstacle in front of it, but the algorithm kept the vehicle’s acceleration. The NN performed well 

in the simulations but did poorly in the hardware implementation. This could be attributed to 

slow algorithm response or lack in robustness of the NN due to the optimized weights [11] [30]. 

 

3.3 Hardware Adjustments 

The dsPIC30F4011 offered a wide range of capabilities for the small package it comes in. 

However, there are some restrictions to its memory (program and RAM) that was noted during 

implementation. The microcontroller has a 48k program memory bytes and an SRAM of 2kB. 

The program code was divided into five (5) files: main program, machine learning function(s), 

initialization, and the communication for I2C and UART. Each code has a source code .c file 

and a header .h file. 

 

The final program uploaded to the microcontroller was summarized in Table  4. The second 

(2nd) column indicates the total memory space each file would need in the microcontroller. The 

total was roughly 56kB which was well beyond the maximum allowable program memory of 

48kB. The program files were rewritten and compiled again and was shown in the 3rd column. 

Mostly, the revisions were deleting some commented previous versions of part of the codes and 
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transitioning other for loops to linear algebraic function to make the code leaner. The weights’ 

data type was also changed from a long double to a double, effectively halving the memory 

needed per array. 

 

 

Table 4. Program files’ memory requirement 

Program Files 
Program Memory Space 

Raw Final Revised Final 

1. main.c 15,814 6,928 

2. header.h  1,662 1,662 

3. FNNfunction.c 18,240 12,663 

4. FNNfunctions.h 620 483 

5. Initmod.c 6,879 5,058 

6. Initmod.h 1,728 1,728 

7. I2Cmod.c 3,958 2,132 

8. I2Cmod.h 1,045 1,045 

9. UARTmod.c 4,391 4,391 

10. UARTmod.h 1,128 1,128 

Approximated total memory 

requirement (Bytes) 
55,465 37,218 

 

 

The main function was also revised to help with the jerking while stationary. The jerking 

movements were tracked back to the crisp outputs of the defuzzification: some small changes 

in inputs were observed to sometimes produce small outputs. This behavior was beneficial to 

the EV in order to have a better transition in changing velocity profile while moving. However, 

it was not ideal for staying put at zero speed because it resulted in somewhat like a hesitation 

movement. A smoothing function was included during zero speed to have a better driving 

experience.  

 

The electric hub motor was also considered to be upgraded to a higher power rating from 

1kW 60V to a 3kW 60V or 4.5kW 72V high torque motor. This was to address the delay in 

movement at starting due to static friction between the tires and the road. The weight of the EV 

and road conditions contributed largely to the torque requirement of the motor. It was observed 

that increasing the torque of the motors helped with finer velocity controls but also increased 

the EV’s weight due to the batteries needed to be added and other accessories. This can be 

researched further to optimize the performance of the EV. 

 

IV. CONCLUSION 

 

The research was able to successfully implement four  (4) different algorithms into  an EV 

and observe its performances at different hyperparameters variations. The tests were done in an 

indoor track with controlled lighting and good road conditions, and in an outdoor road. LiDAR, 

motors with built-in hall sensors, and optical flow meter were used to measure headway 

clearance and velocity. The EV was retrofitted with a dsPIC30F4011 microcontroller for 

processing and control. 
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 A purely FL, one (1) hidden layer FN, two (2) hidden layer FN, and purely NN 

algorithms were implemented for the EV’s stop-and-go autonomous control. It was determined 

that four (4) parameter settings were to be tested after clearing computer simulations: W1CoBa, 

W1DeBa, W2DeBa, and W1ComB.  

 

 A total of 13 different algorithms were tested in the indoor tests. Maximum and minimum 

acceleration (and deceleration) swings were observed. Sensor reading errors and discomfortable 

driving experience (i.FLe. jerking) were sometimes observed in the test runs. W1DeBa, with 

the highest success rate of stopping before an obstacle, was chosen to be used for the outdoor 

tests. The outdoor tests revealed that a FN network with two (2) hidden layers (H2) had better 

control in maintaining proper headway distance and had a more fluid transition in acceleration 

and deceleration. The purely FL and purely NN algorithms poorly performed in maintaining 

headway clearance and consistently jerked. The purely NN algorithm’s performance could also 

be attributed to the instrumentation delay of the hardware. Static friction was also observed to 

cause hindrances in the test runs because it created more starting torque for the EV therefore 

making it hard to stop in time given the relatively short track. The FN network with one (1) 

hidden layer (H1) performed better than the FL and NN algorithms but has trouble maintaining 

a consistent headway clearance. The addition of another layer, H2 compared to H1, had better 

driving experience (no jerking and less abrupt acceleration and deceleration). H2 also 

consistently maintained the recommended headway clearance. Two (2) out of the eight (8) tests 

in H2 were invalid due to sensor reading errors. 
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NOMENCLATURE 

Symbol Description Unit 

Acc Acceleration; set as the output of the system [m/s]2 

Ba Batch processing used for training neural networks  

C Constant Acceleration; a MF for Acc  

CF Closing Fast; a MF for RV  

CL Closing; a MF for RV  

Co Constant learning rates used for training neural networks  

De Decaying learning rates used for training neural networks  

DSSD Distance sum of squared difference or Distance divergence; set 

as the input of the system 

[m] 

EEEI Electrical and Electronics Engineering Institute  

EV Electric vehicle  

FL Fuzzy logic  

FN Fuzzy-neural network  

FV Following vehicle  
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Symbol Description Unit 

H1 Fuzzy -neural network with one hidden layer  

H2 Fuzzy -neural network with two hidden layers  

K Okay; a MF for DSSD  

LA Light Acceleration; a MF for Acc  

LD Light Deceleration; a MF for Acc  

LV Lead Vehicle  

mB mini-batch processing used for training neural networks  

MF Membership function  

MTC Much Too Close; a MF for DSSD  

MTF Much Too Far; a MF for DSSD  

NN Neural network  

OF Opening Fast; a MF for RV  

OP Opening; a MF for RV  

RV Relative velocity; set as the input of the system [m/s] 

SA Strong Acceleration; a MF for Acc  

SD Strong Deceleration; a MF for Acc  

TC Too Close; a MF for DSSD  

TF Too Far; a MF for DSSD  

TSK Takagi-Sugeno-Kang; an inference system used for fuzzy logic 

controllers 

 

UPD University of the Philippines Diliman  

W1 Random weights using -1 to +1 used for initializing neural 

networks 

 

W2 Random weights using -2 to +2 used for initializing neural 

networks 

 

Z Match; a MF for RV  
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