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This paper presents a mathematical programming
approach fo solving the problem of routing a fleet of vehicles
for the distribution of a number of product-types in a nefwork
where each node represents a client with specific demands.
The proposed mathematical model utilizes binary and real
valued decision variables and linear formulations of the objective
function and the constraints.

The fleet routing for multiple product-types distribution
problem can be seen as an extension and/or a combination of three
classical operations research problems, namely:

(a) the Travelling Salesman’s Problem (for fleet routing),

(b) the Knapsack Problem (for multiple product-types loading),
and

(c) the Transportation Problem (for products distribution).

For the fleet routing concern, the fleet is composed of a number
of vehicles such as tankers, or vans, or airplanes. The vehicles may
be classified into different types according to certain attributes such
as their loading capacities, cost of operations, loading costs, among
others. The fleet is supposed to cover certain routes in a network of
nodes representing clients with specific demands for a number of
product-types. The route of a vehicle is a cyclic path composed of
arcs or segments between adjacent nodes where each vehicle starts
off from a specific node (initial node) and ends up at the same
node (terminal node = initial node).

The fleet routing problem is therefore a variation of the
travelling salesman’s problem. Inthe latter problem, the salesman
represents a single vehicle which is required to visit all the nodes in
the network. In the former problem, the fleet represents one or
more vehicle (salesmen), each of which is required to visit a subset
of nodes which, together with the arcs connecting adjacent nodes,
should constitute the cyclic route of a vehicle. The objective in
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both problems is to find the route associated with the minimum
total distance (cost) such that none of the nodes is ever visited more
than once (excepting the initial node) by the same vehicle.

An inherent problem in the multiple product-types distribution
concern is the determination of the associated loading requirement
for each vehicle per segment (arc) in its route. A vehicle represents
a number of (one or more)resources having a limited value (or
values) which must not be exceeded. Each resource, such as the
total load capacity (in terms of the maximum weight and volume
capacities) of the vehicle must be utilized optimally by ensuring
that the best mix of units of the product-types is loaded into a
vehicle and moved through each segment of the route.

The problem of determining the optimal loading strategy for
the multiple product-types per vehicle throughout its route can be
seen as an extended knapsack problem. In the simplest knapsack
problem, the knapsack represents a single vehicle in the fleet routing
problem with only one limited resource such as its volume capacity.
In both problems, there is a need to determine the best mix of units of
multiple product-types to be loaded into the knapsack or vehicle,
where the objective is to achieve the optimal total utility value such
as the minimum total loading cost. It is clear that the fleet routing
and multiple product-types distribution problem actually involves
solving a knapsack-type of problem for each vehicle and for each
segment in its route because it demands the determination of the
optimal loading combination of units of the multiple product-types
tobe transported by each vehicle through each segment of its route.

For the multiple product-types distribution concern, the
demands for each of the product-types in every node (or client) in
the network must be satisfied. The problem of determining the
optimal distribution of all the product-types can be seen as an
extension of the simplest transportation problem. In the latter
problem, there is only one type of product, one set of source nodes
and another set of destination nodes, and the associated graph is
a bi-partite graph where each link (arc) between a source node
and a destination (client) node is assumed to be serviced by a
vehicle. In the former problem, there are more than one product-
type, and for each vehicle there is only one source node but there
may be one or more destination (client) nodes. In both problems,
the objective is to minimize the total cost of moving the products
from the source nodes to the destination nodes whereby the demands
ateach destination node for the units of all the product-types are
satisfied.
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Definition of Symbols
Let us define the following symbols which can be utilized in
the formulation of the objective function and the constraints for

the fleet routing and multiple product-types distribution problem.

The following symbols represent the parameters of known

values.
Lj,n = distribution points (nodes), where ij,n = 1
represents the source (or terminal) node for a
problem situation with all the vehicles having the
same source node (i.e., there is only one major
source (node) for all the product-types, such as
a refinery for petroleum products).
k = vehicle type
/ = product-type
ds‘,-’ j = distance from node i to node j
fes, = operating cost per unit distance of running
vehicle k

les,, = loading cost per unit distance per unit of load of
product-type using vehicle k

dmi) ] = demand at node i for product-type 1

cp, = loading capacity of vehicle k

The following symbols represent the decision variables.

cost = total transportation cost
X,,, = quantity of product-type I to be transported by
vehicle k from node i to node j

xknl «.n = quantity of product-type 1to be disposed by vehicle
k at node n

1

i = { 1, if vehicle & uses arc (1, /)
i

0, otherwise

A Mixed-Binary Linear Model

The objective function representing the total transportation
cost in terms of the parameters and the decision variables defined
above can be formulated as a linear function as follows:

Cost = ZZZ dgi,j*tk,i,j*fcsk * ZZZngi,J'*xk.i,J',l*lcsk,l
i j ok i j ok o1
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The first summation represents the cost components which
are dependent on the distances covered by the vehicles and the
fixed costs per unit distance entailed while utilizing the vehicles.
The second summation represents the cost components which are
dependent on the distances and the loading costs for transporting
the products.

The following are the relevant constraints which all have linear
formulations in terms of the parameters and the decision variables
defined above.

1. Demand Constraints:

For every node n (except n=1), and for every product I:

; xknl,m‘, > dm,,

The sum of the quantities of product-type | disposed at node
n by all the vehicles must be at least equal to the demand for the
product-type 1.
2. Supply Constraints:.

For node i = 1, and for every product I:

ZZ >de

X, . .
j#l k kgl J#l Jol

From the source node (say,a single refinery at node i = 1),
the quantities of product I to be transported by the vehicles to the
other nodes should in total be at least equal to the total of the
demands at all the nodes.

3. Destination Constraints:

For every vehicle k, and for every node i:

Z Ly < 1

J#i

From a node i, a vehicle can have at most one destination
node j.

4. Exit Constraints:

For every vehicle k, and for every node i # 1:

Ztk,n,i = Ztk,i,j

n#i J#i
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If a vehicle k does not pass through node i (i.e., the left-side
summation = 0), then it should not exit from node i (i.e., the right-
side summation = 0), and if it does (i.e., the left-side summation
1), then it must exit from node i (i.e., the right-side summation
1).

5. Capacity Constraints:

Fori = 1, and for every vehicle k:

szk,i,j,l < o,
/

J=l
The total of the quantities of the product-types transported
by a vehicle from the source node should not exceed the capacity of

the vehicle.

6. Flow Conservation Constraints:

For every vehicle k, for every node 7 # 1,and for every product

Zxk,t,n,l - anlkn/ = Zxk,n,j,l

1#n J#En
Except for the source node, the quantity of a product
transported by a vehicle to a node n minus the quantity disposed at
that node by the vehicle must be equal to the quantity transported
from node n to the next node.

7. No Loop Constraints:

For every node i (or j), and for every vehicle k:
ly,; =0ifi=j
8. Transported Quantity Constraints:

For every vehicle k, for every node i (#)), and for every product 1:

xk,l,j,[ = tk,l,j * M
where M is a sufficiently large number (e.g., M :;cpk )

Variables X, , = 0 if route segment (i,j) is not used by

vehicle k Ge., I, ; = 0), otherwise it should not exceed the total
tonnage capacity of vehicle k.
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9. Zero Load Constraints:

For every vehicle k, for every node i # 1, for every product
LLandj = 1:

Xeijl = 0

Bach vehicle must have a zero load when it returns to the
source (or terminal) node.

Sample Computational Results

To demonstrate the applicability of the mathematical
formulations above, the following sample data are used for a fleet
routing and multiple products distribution problem and a GAMS
program (given in the Appendix) provide the results described
below.

1. There are six nodes representing i and j:
REFINERY, DEPOT1, DEPOT2, DEPOT3, DEPOT4, and DEPOTS

2. There are two vehicles representing tankers, k, of two types
TYPE-1 and TYPE-2

3. There are two petroleum products, 1:
PROD1 and PROD2

4. The fixed cost fcs(k) per km of running tanker k are:
fcs(TYPE-1) = 10 and fcs(TYPE-2) = 6

5. The tonnage capacity cp(k) of tanker k are:
cp(TYPE-1) = 500 and cp(TYPE-2) = 800

6. The following table gives the loading costs, lcsk | perton per
km of running tanker k for product I:

lesy PROD 1 PROD2

TYPE-1 10 6

TYPE-2 4 8
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7. The following table gives the distances, dS,-, ; from distribution

point i to point j:
ds, Y REFINERY | DEPOT1 |DEPOTZ2 | DEPOT3 | DEPOT4 | DEPOTS

REFINERY - 5 11 10 8 7
DEPOT1 5 - 6 8 8 8
DEPOT2 11 6 - 4 7 9
DEPOT3 10 8 4 - 6 10
DEPOT4 8 8 7 6 - 6
DEPOT5 7 8 9 10 6 -

8. The following table gives the demands, dm,,, at depot i for
petroleum product 1

dm, , PROD1 PROD2
REFINERY 0 0
DEPOTI 100 100
DEPOT2 200 100
DEPOT3 200 70
DEPOT4 300 30
DEPOT5 50 20
TOTAL 850 320

For the above data set used in the mathematical
programming model for this problem, GAMS generates 209
single equations, 213 single real variables, and 62 discrete
variables. The following optimal route is obtained.

For tanker TYPE-1:

REFINERY — DEPOT1 — DEPOT2 — DEPOT3 — DEPOT5 —REFINERY

For tanker TYPE-2:
REFINERY — DEPOT4 — DEPOT3 — DEPOT2 — DEPOT5 —REFINERY

The optimal initial loads of each tanker originating at the

REFINERY are:
PROD1 | PROD2 | Maximum Capacity
TYPE-1 100 290 500
TYPE-2 750 30 800
Total Demand | 850 320
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The optimal quantity of product I moved from point i to j by
tanker k:

For tanker TYPE-1:

PROD1 PROD2

REFINERY - DEPOT1 100 290
DEPOT1-DEPOT2 0 190
DEPOT2-DEPOT3 0 90
DEPOT3-DEPOTS 0 20
DEPOTS5-REFINERY 0 0

For tanker TYPE-2:

PROD1 | PROD2
REFINERY - DEPOT4 750 30
DEPOT4-DEPOT3 450 0
DEPOT3-DEPOT2 250 0
DEPOT2-DEPOTS 50 0
DEPOTS5-REFINERY 0 0

The optimal quantity of product | disposed by tanker k at
node n are:

For tanker TYPE-1:

PROD1 PROD2
DEPOT1 100 100
DEPOT2 0 100
DEPOT3 0 70
DEPOT5 0 20

For tanker TYPE-2:

PROD1 PRODZ2
DEPOT4 300 30
DEPOT3 200 0
DEPOT2 200 0
DEPOTS 50 0

The optimal total fixed cost = 524, while the optimal total
loading cost = 66420, which together make up of the optimal
total transportation cost = 66944.
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Possible extensions of the mathematical programming
formulation:

The following additional requirements in the fleet routing
and multiple products distribution problems can be incorporated
in the proposed mathematical model.

a. Changes in demands (either deterministic or probabilistic)

b. Closing down a depot or putting up additional depot(s)

c. Decreasing / increasing the number of vehicles

d. Decreasing / increasing the number of product-types

e. Determining optimal capacities of the vehicles

f. Increasing the number of objective functions (MOMP)
e.g., Separate fixed cost and loading cost with additional
opportunity cost when initial supply of products is limited
or supply is short of demand.
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Appendix
A GAMS Program for the Fleet Routing and Multiple Products Distribution Problem

SETS I distribution points
/REFINERY,DEPOT1,DEPOT2,DEPOT3 ,DEPOT4,DEPOT5/
K tankers / TYPE-1,TYPE-2 /
L petroleum products / PROD1, PROD2 /

ALIAS (1JN);

PARAMETERS FCS(K) fixed cost per km of running tanker k
/TYPE-1 10, TYPE-2 6/

CP(K) tonnage capacity of tanker k

/ TYPE-1 500 , TYPE-2 800/

PARAMETER M multiplier to define an upper bound of x due to routing
M = SUM(K,CP(K));

TABLE LCS(K,L) loading cost per ton per km of running tanker k for product 1

PROD1 PROD2Z
TYPE-1 10 6
TYPE-2 4 8

TABLE DS(I,]) distances from distribution point i to point j
REFINERY DEPOT1 DEPOTZ DEPOT3 DEPOT4 DEPOT5

REFINERY 1000000 5 11 10 8 7
DEPOT1 5 1000000 6 8 8 8
DEPOT2 11 6 1000000 -4 7 9
DEPOT3 10 8 -4 1000000 6 10
DEPOT4 8 8 7 6 1000000 6
DEPOTS 7 8 9 10 6 100000

TABLE DM(I,L) demand at depot i for petroleum product |
PROD1 PROD2

REFINERY 0 0
DEPOT1 100 100
DEPOT2 200 100
DEPOT3 200 70
DEPOT4 300 30
DEPOTS 50 20

VARIABLES X(K,JJ,L) tons of product | moved by tanker k from nodeitoj
XKNL(K,N,L)  tons of prod | disposed by tanker k at node n

TE,L)) binary variable: 1 means tanker k passes pt. i to j,
0 otherwise
COST total transportation cost;
POSITIVE VARIABLE X,XKNL;

BINARY VARIABLES T;
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EQUATIONS
COSTEQN total cost equation
DEMAND(N,L) demand constraint for point n for product 1
SUPPLY (I,L) supply constraint from the refinery for prod 1
DESTIN(K,I) unique destination constraint
EXIT(K,I) exit rqmt for tanker k visiting depot i
CAPACITY (K) capacity constraint for tanker k
FLOW (K,N,L) flow conservation at node n for product 1, tanker k
TZERO(K,1)) no loop constraints fori =

XBOUND(K,IJ,L)  boundary constraint on x due to routing rqmt
ZEROXRET(IJ,K,L)  zero load on return to the refinery forj = I

COSTEQN.. COST =E= SUM((IJ,K,L)$(ORD(I) NE ORD(])), X(K,IJ,L)*DS(1,))
* LCS(K,L)) + SUM((K,IJ))$(ORD(I) NE ORD(])), DS(1))*
TK,L))*FCS(K));

DEMAND(N,L)$(ORD(N) NE 1).. SUM(K, XKNL(K,N,L) ) =E= DM(N,L);

SUPPLY(LLL)$(ORD(I) EQ 1).. SUM((J,K)$(ORD(I) NE ORD(])),X(K,IJ,L))

=G= SUM(J$(ORD(J) NE 1),DM(J,L));

DESTIN(K,))..  SUM(J$(ORD(J) NE ORD())), T(K,1)))) =L= 1,

EXIT(K,D$(ORD(I) NE 1).. SUM(J$(ORD(J) NE ORD(D)), T(K,1,J)) =E=

SUMN$(ORD(N) NE ORD(I)), T(K,N,D)) ;
CAPACITY (K).. SUM((J,L)$(ORD(J) GT 1), X(K,”REFINERY” J,L)) =L= CP(K);
FLOW(K,N,L)$(ORD(N) GT 1).. SUM(I$(ORD(I) NE ORD(N)), X(K,I,N,L)) -
XKNL(K,N,L) =E= SUM(J$(ORD(J) NE ORD(N)), X(K,NJ,L));

TZERO(K,I))$(ORD(J) EQ ORD(D)).. T(K,1)) =E= 0;

XBOUND(K,IJ,L)$(ORD(I) NE ORD(J)).. X(K,IJ,L) =L= T(K,IJ)*M;

ZEROXRET(LJ,K,L)$((ORD(]) EQ 1)$(ORD() NE 1)).. X(K,IJ,L) =E= 0;

MODEL FLEET / ALL /;

SOLVE FLEET MINIMIZING COST USING MIP;

PARAMETER

LOAD(K,L) optimal initial load of tanker k for product I;
LOAD(K,L) = SUM(J,X.L(K,”REFINERY”J,L));
PARAMETERS
OPTFCOST = optimal total fixed cost
OPTLCOST = optimal load cost;
OPTFCOST = SUM((K,1,)), DSUJ)*T.L(K,L)*FCS(K));
OPTLCOST = SUM((1],K,L), X.L(K,IJ,L)*DSIJ))*LCS(K,L));
DISPLAY LOAD, X.L, XKNL.L, T.L, OPTFCOST, OPTLCOST, COST.L;



