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ABSTRACT

A detailed derivation of the exact expression for the average work done

in a transverse f ield quench of the quantum Ising model ground state

is presented. In the thermodynamic limit, it is proved that the average

work done generally has inflection points at the critical f ield for the

pre-quench quantum phase transition. The f irst divergent f ield derivative

i s  ca lcu la ted  and  i s  shown  to  d ive rge  logar i thmica l l y. We  a l so

demonstrate that the average work done is equal to the product of the

transverse magnetization of the pre-quench ground state and the change

in the magnetic f ield.
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INTRODUCTION

An initially prepared quantum state evolves unitarily after a rapid change in the

Hamiltonian in a quantum quench. The system is isolated from heat and particle

baths, and its response time is much longer than the time scale of the Hamiltonian

change, so that no adiabatic approximation can be made. Quenches like these

generally lead to excited (non-stationary) states, and the resulting non-equilibrium

dynamics has been the subject of several investigations on quantum many-body

physics in the absence of decohering environmental effects (Polkovnikov et al.

2011; Eisert et al. 2015).  Preparing suff iciently isolated states under controllable
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conditions is a technical challenge but experimental progress in the last two decades

has allowed quench dynamics to be observed in, for example, ultracold gases in

optical lattices (Greiner et al. 2002; Cheneau et al. 2012). Because these isolated

quantum systems evolve in time without exchanging matter and heat with a

reservoir, conventional statistical mechanical notions, such as temperature, entropy,

and equilibriation, are not directly applicable to them. Thus, new theoretical

frameworks have been developed to investigate quantum quenches and the novel

phenomena that are associated with them. Some recent new discoveries include

the emergence of persistent fluctuations despite the absence of energy and matter

exchanges with a bath (Rossini et al. 2009; Häppölä et al. 2012; Cosme and Fialko

2014), universal scaling behavior in the vicinity of quantum critical points (Silva

2008; Jacobson et al. 2011; Gambassi and Silva 2012), and the generation of quantum

entanglement entropy (Fagotti and Calabrese 2008; Cardy 2011; Daley et al. 2012;

Schachenmayer et al. 2013; Alba and Heidrich-Meisner 2014; Alkurtass et al. 2014;

Torlai et al. 2014).

In this manuscript we consider the case of a zero temperature instantaneous quench

of the transverse magnetic f ield h in a quantum Ising model. The Hamiltonian is

(1),

where  is the a-Pauli operator on site j. There are N spins in the chain and

periodic boundary conditions are imposed. The system is thermally isolated and

prepared in the ground state               of the pre-quench Hamiltonian H0 = H(h0) with

f ield h0. At time t = 0+ the f ield is suddenly changed to h1, and the system

subsequently evolves according to the post-quench Hamiltonian H1 = H(h1) .

Throughout this work, the subscript index                        will refer to pre-quench

(post-quench) quantities.

The quantity of interest in this study is the average work done (or quantum work) in

these quenches under the formalism developed by Talkner et al. (2007, 2016).

This quantum work W is defined as the difference between a projective measurement

of the system energy at some time T after the quench and the initial ground state

energy at time t < 0 . That is, if              is the state vector of the system at time T,

the work done is

(2).
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(5).

For a given measurement of quantum work in this quench protocol, one gets the

result Wm = E1(m) – E0, where E0 is the pre-quench ground state energy and E1(m)

is the mth energy eigenvalue of the post-quench Hamiltonian. This result occurs

with total probability so that the quantum work distribution

p(W) is equal to

(3).

Taking the Fourier transform of this distribution gives the characteristic function

(4),

whose logarithm in  G(u) is the generating function for the cumulants of p(W).

From  the  known  properties of this cumulant  generating function,  the average work

done  is  〈W〉 = _ilimu→0∂ ln G(u)/∂u and the variance in the work  done is ∑2 =_limu→0

∂2  ln G(u)/∂u2. These statistical measures of the work done in a quenched quantum

Ising model have been investigated at zero initial temperature (Silva 2008), non-

zero temperatures (Dorner et al. 2012), and the more general anisotropic XY model

(Bayocboc Jr. and Paraan 2015). These studies have shown that signatures of the

quantum phase transition of the model, such as the vanishing excitation gap, can be

revealed through an analysis of the work statistics. In this paper, we focus on

providing a detailed derivation of the exact solution for the average work done

along the quantum Ising line to complement the previous work of Silva (2008) and

Bayocboc Jr. and Paraan (2015). In particular, we will prove that the average work

done is not an analytic function of the pre-quench f ield h0 when the excitation gap

closes at the quantum critical point.

The characteristic function G(u) is given as an expectation value (4) with respect

to the pre-quench ground state              .  It is convenient to calculate this quantum

average in the basis of single-particle fermionic Jordan-Wigner Fock states. The

result is (Silva 2008; Dorner et al. 2012):
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In the previous equation,                      is the difference between the ground state

energies of the post-quench and pre-quench Hamiltonians.  Additionally,  the angle

             is the difference between the post-quench and pre-quench

Bogolyubov angles. These Bogolyubov angles satisfy

Finally, the energy spectrum of elementary excitations is

(7),

where for odd N  or for even N. The effect of N

being odd or even is negligible in the thermodynamic limit                . The excitation

gap  closes  at  the  critical  f ield  value               which signals a quantum phase

transition between a ferromagnetic (⏐hi⏐< 1) and paramagnetic (⏐hi⏐>1) ground

state.

The average work done can be calculated from the f irst derivative of ln G, which

yields

We now take the thermodynamic limit              , and f ind that the average work per

spin                               becomes the def inite integral

∆n = θ1(qn) − θ0(qn)  

∆E = E1 − E0  
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The average work per spin is singular when the pre-quench Hamiltonian is quantum

critical (h0 = ±1). In the following section we prove that  〈w〉 is indeed non-analytic

(not inf initely differentiable) at these quantum critical points.

tanሾ2݅ߠ ሺ݊ݍ )ሿ ൌ
sin ݊ݍ

݄݅ െ cos ݊ݍ
 

(8).

(6).



Average Work Done in a Ground State Quench

58

AVERAGE WORK DONE

The symmetry and periodicity of the trigonometric functions allow us to put the

integral (9) in the form

(10).

After factoring and rearranging terms, the resulting integrals are recognized as the

complete elliptic integrals

(11),

(12),

with modulus      We f ind thatκ.  

(13),

where Also, from the known connection formulas for the

complete elliptic integrals (Gradshteyn and Ryzhik 2007; Olver et al. 2010)

(14),

(15),

(16),

we can simplify our result to

(17).

A similar result for this compact formula (17) has been reported without derivation

by Bayocboc Jr. and Paraan (2015).
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SINGULARITIES AT CRITICALITY

The exact expression (17) for      reveals that the average work per spin is not

analytic at (⏐h0⏐= 1),  since Ε(κ) is not inf initely differentiable at⏐κ⏐= 1.  As seen

in graphs of 〈w〉 at different pre-quench and post-quench f ields (Figure 1), quantum

criticality is manifested as a sudden change of curvature of the average work done

at the pre-quench critical f ields h0
=  ±1.  In fact, we now prove that these points are

actually inflection points by explicitly calculating the needed derivatives.

 〈ݓ〉

Figure 1.  The average work done per spin 〈w〉 for different post-quench f ields h1
generally have inflection points at the pre-quench critical f ields h0

=  ±1 .

The f irst derivative of        with respect to h0 is exactly

(18).

This derivative is graphed in Figure 2 for several f ield quenches and we verify that

it generally diverges at the critical points                    . The only exceptions are when

the  post-quench  f ield  is also  at  the  same  critical  value as the post-quench f ield

                    .

We now investigate the divergence at critical h0 using the asymptotic formulas for

the elliptic integrals at unit modulus (Olver et al. 2010). The leading term of the

asymptotic expansion of the exact derivative (18) about the critical f ield h0
= 1 is

(19).
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This result shows that the leading divergence in the derivative ∂〈w〉/∂h0 is logarithmic

in⏐h0 –1⏐. This divergence vanishes when h0 = h1= 1. Similarly, an expansion about

h0 = –1  yields

These approximations about h0 = ±1 are compared with the exact results in Figure 3

for  the  case when the post-quench Hamiltonian is also critical (h1 = ±1). The

logarithmic divergence is seen to be captured by the approximate expansions about

h0 = ±1 (dashed lines),  and  we  f ind  that  the  derivative  remains  continuous  when

h0 = h1= ±1:

(21).

To f inally prove that the average work per spin has inflection points at critical pre-

quench  f ields,  we  need  to  verify  that  the  second  derivative                         changes

sign at  h0 = ±1,   as depicted in Figure 4.  Let us define the complement  .

The second derivative becomes

(22).

Figure 2. The derivative ∂〈w〉/∂h0  diverges at the pre-quench critical f ields h0 = ±1,
except when h1 = h0.

(20).
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Figure 3. The derivative (solid line) diverges logarithmically at the
critical f ields except at h0 = h1= ±1.  The approximate expansions about  h0 = ±1
are also shown (dashed lines).

 0݄߲/〈ݓ〉߲

Figure 4. The second derivative changes sign at the pre-quench critical
f ields h0 = ±1, except when h1= h0 .  In the special case when both Hamiltonians are
at the same critical f ield h0 = h1= ±1 (black arrows), the second derivative of the
average work per spin diverges logarithmically at h0 = ±1.

0݄߲/〈ݓ〉2߲
2 

Again, asymptotic expansions about h0 give the following leading order divergences

when h0 ≠ h1 ≠1:

〈ݓ〉2߲.(23)

߲݄0
2 ~

1
ߨ2

݄1 ∓ 1
݄0 ∓ 1

,       ሺ݄0 ൎ ±1) 



Average Work Done in a Ground State Quench

62

Since this derivative changes sign at h0 = ±1, we conf irm that the average work per

spin indeed has inflection points when the pre-quench f ield is at its critical value

and h1 ≠ h0 . This time, in the special case that the post-quench field is critical h1 = ±1,

the leading divergence of the second derivative at h0 = h1 is logarithmic:

(24).

DISCUSSION AND CONCLUSION

We have calculated the average work done in a zero temperature f ield quench of

the quantum Ising model. In the thermodynamic limit, we presented an exact

expression for the average work per spin         in terms of complete elliptic integrals. We

have shown that the average work per spin is not inf initely differentiable at the

pre-quench f ields h0 = ±1, where a quantum phase transition occurs. When the

post-quench f ield h1 ≠ ±1, the f irst derivative does  not  ex i s t  and

diverges logarithmically at h0 = ±1. In this case, the non-analyticity at the critical

point takes the form of an inflection point. When the post-quench Hamiltonian is

also critical, the non-analyticity at h0 = h1 = ±1  is weakened. That is, the f irst

derivative                      at h0 = h1  exists and the logarithmic divergence f irst appears

in the second derivative                 .

It is interesting to note that complete elliptic integrals are encountered frequently

in the study of the quantum Ising model. In fact, the derived expression for the

average work done (10) is similar to that for the transverse magnetization of the

quantum Ising model (Niemeijer 1967).  Some exact solutions on a chain of spins

1/2. Physica 36:377-419). That is, if     is the average magnetization of the ground

state of the Ising model with f ield h0 :

then . Thus, the logarithmic divergence (19) of the f ield derivative

at the pre-quench quantum critical point also mirrors the logarithmic

divergence of the zero-temperature magnetic susceptibility                       of an

unquenched Ising model at the critical f ield h  = ±1, where the excitation gap

vanishes and the quantum phase transition occurs.
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