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ABSTRACT

In set theory, an ideal is a collection of sets that are considered to be

small or negligible, such that every subset of an element of the ideal

must also be in the ideal and the union of any two elements of the

ideal must also be in the ideal. A fuzzy set is a class of objects with

grades of membership in the interval [0, 1]. It is used to mathematically

represent uncertainty and provide a formal tool to deal with imprecisions

present in many problems. We use ideals to def ine fuzzy on ideal sets,

which can be seen as a generalization of the fuzzy sets. We establish

some of its basic properties,  and we state and prove a Hahn-Banach

Theorem wi th  the  fuzzy  on  idea l  se t s ,  wh ich  can  be  seen  as  a

generalization of a fuzzy Hahn-Banach Theorem, which in turn,  is  a

fuzzif ied generalization of an analytic form of the classical Hahn-Banach

Theorem.
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INTRODUCTION

The concept of ideal spaces was f irst studied by Kuratowski (1966) and

Vaidyanathaswamy (1945).  Formally, given a set X, an ideal I(X) is a nonempty

collection of subsets of X that satisf ies:

i. A ∈ I (X) and B ⊆ A  implies  B ∈ I (X); and

ii. A ∈ I (X) and B ∈ I (X) implies A ∪ B ∈ I (X).
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Ideal spaces were then imported to topology. For instance, Jankovic and Hamlett

(1990) investigated the notion of topological spaces with ideals. Thereafter, ideal

spaces found their way to other concepts in topology.

In 1965, fuzzy sets were introduced by Zadeh (1965) and Klaua (1965) as extension

of the classical notion of set. In classical set theory, the membership of elements in

a set is assessed in binary terms: an element either belongs or does not belong to

the set. That is, a set A on a universal set X can be identif ied as the characteristic

function of A having only the values 0 or 1. On the other hand, a fuzzy set on X is

formally def ined as a mapping from X into the unit interval [0, 1]. Then in 1978,

Zadeh introduced possibility theory as an extension of his theory of fuzzy sets and

fuzzy logic (Zadeh 1978). Possibility theory should not be confused with probability

theory. It is an uncertainty theory trying to make sense of incomplete information

and is viewed as a complement to probability theory. Similar to a probability

distribution, the theory uses a possibility distribution. A possibility distribution is a

mapping π
x
  from a set of states to a totally ordered set such as the unit interval [0, 1].

As one may easily notice, a possibility distribution can be used as an interpretation

of the fuzzy sets. We provide the example given by Zadeh (1978) to better

understand a possibility distribution and differentiate it from a probability

distribution.

Suppose we have the statement “Hans ate x eggs for breakfast,”  with x taking values

in U = {1,2,3,...}.  We may associate a possibility distribution with x by interpreting

π
x
(u) as the “degree of ease with which Hans can eat u eggs”. We may also associate

a probability distribution with x by interpreting P
x
(u) as the probability of “Hans

eating u eggs for breakfast”.  The values of π
x
(u) and P

x
(u) may look like as shown in

the following table.

u 1 2 3 4 5 6 7 8

π
x
(u) 1 1 1 1 0.7 0.5 0.4 0.2

P
x
(u) 0.2 0.7 0.1 0 0 0 0 0

One may easily notice that the sum of all values for P
x
(u) is equal to 1, but for π

x
(u),

it is not. We may also observe that the possibility that Hans may eat 3 eggs for

breakfast is 1 but the probability that he may do so is quite small. Hence, we can say

that a high degree of possibility does not imply a high degree of probability, nor

does a low degree of probability imply a low degree of possibility.  However, if an

event is impossible, then it should be improbable.
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In this study, we want to capture statements like the following. Suppose we want

to complete the statement “Tomorrow                   , ” we may have the following

choices:

a. will be sunny

b. there will be rain

c. will be cloudy

d. there will be a storm

We may give a value of 0.8 for the possibility that “tomorrow will be sunny”, 0.6 for

the possibility that “tomorrow there will be rain”, 0.4 for the possibility that

“tomorrow will be cloudy”, and 0.2 for the possibility that “tomorrow there will be

a storm”.  Now, consider the possibility that “tomorrow will be sunny and there will

also be rain.”  This condition is very rare but not impossible. We cannot just give this

possibility a value equal to the inf imum of the possibility that “tomorrow will be

sunny” and the possibility that “tomorrow there will be rain”. We know that this

possibility should be far less than any of these two possibilities. Hence, we may

give it a separate possibility value not dependent on the other two mentioned

possibilities, say, 0.01.  With this situation in mind, we define a fuzzy on ideal set in

the next section.

As an application of this new concept, we consider the Hahn-Banach Theorem. The

theorem is no doubt an important and powerful result in functional analysis. It was

generalized in many directions. One of it is by fuzzy sets, like what Rhie and Hwang

(1999) did. In a similar way, we generalize the theorem with fuzzy on ideal sets.

FUZZY ON IDEAL SETS

We now formally def ine a fuzzy on ideal set.

Definition 2.1. Let X  be a nonempty set I(X) an ideal on X, and I be the unit

interval  [0, 1] .  A function μ:I(X)→I called a fuzzy on ideal set provided:

i. μ (∅) = 0 and

ii. for nonempty sets A, B ∈ I (X), with A ⊆ B, we have μ (B) ≤ μ (A).
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We denote by I I(X)  the set of all such μ.

It is important to note here that the “reverse inequality”, μ  (B) ≤ μ (A), of Def inition

2.1 encapsulates our preceding idea that the possibility that “tomorrow will be

sunny and there will also be rain” should not just be equal to the inf imum of the

possibility that “tomorrow will be sunny” and the possibility that “tomorrow there

will be rain” as it can be far less.

Remark 2.2. We may think of a fuzzy on ideal set as a generalization of a fuzzy set in X

in the sense that the set of all fuzzy sets I X can be embedded in I P(X), where P(X) is the

power set of X— the largest ideal on X .  To see this, let μ : X → I  be a fuzzy set in  X.  We

can identify μ  with μ ∈IP(X) defined by

Example 2.3. Let X = {a,b} and μ = {(a,1), (b,0.5)} be  on X.  We may identify μ
with the fuzzy on ideal set μ  def ined as μ = {({a},1),  ({b},0.5), ({a,b},0), (∅,0)}.

Example 2.4. Let X be a nonempty set and μ : X → I  be a fuzzy set. We can def ine

a fuzzy on ideal set π : P(X)→ I as π (A) = inf
x∈A 

μ(x) and π (∅) = 0. This is called a

guaranteed possibility in Dubois and Prade (2000).

Remark 2.5.  It is important to note that Def inition 2.1 does not def ine a measure.

For A ⊆ B, a measure m should have m(A)≤m(B) , not the reverse inequality, as in

our def inition.

Next, we def ine some relational operators between fuzzy on ideal sets.

Definition 2.6.  Let X be a nonempty set and μ1, μ2 ∈ II(X).  We say that μ1 ≤ μ2 , μ1 ≥ μ2

or μ1 = μ2 , provided that, for every A∈ I(X), we have μ1(A)  ≤ μ2(A), μ1(A) ≥ μ2 (A), or

μ1(A) =μ2(A), respectively.

Definition 2.7.  Let X be a nonempty set and μ ∈ I I(X). The complement of μ denoted

by μ c:  I (X)   →I  is def ined by μ c (∅) = 0, and for ∅ ≠  A∈ I(X) , μ c : (A) = inf {1– μ ({x})}.

Remark 2.8.  For A = {x}, the preceding def inition coincides with the def inition of

the complement of a fuzzy set.

Definition 2.9. Let X be a nonempty set and I(X) be an ideal on X.  If {μ
j 
| j∈ J} is a

collection of fuzzy on ideal sets, then the union and the intersection of the μ
j 
’s are

given by:

∼

∼

 μ (x), if  A={x}, x∈X; ∼μ (A)= 0,         otherwise.

∼

x∈A
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i. (∨
j∈J 

μ
j
)(A) = sup {μ

j
(A)| j ∈ J}; and

ii. (∧
j∈J 

μ
j
)(A) = inf {μ

j
(A)| j ∈ J}, respectively, for every A ∈ I(X).

Next, we show that the complement, union, and intersection of fuzzy on ideal sets

are also fuzzy on ideal sets.

Proposition 2.10. Let X be a nonempty set and I(X) be an ideal on X .  If  {μ
j
 | j ∈ J}

is a collection of fuzzy on ideal sets, then μ  c
j 
,

 
∨ 

j∈J 
μ

j 
,

 
and ∧

j∈J 
μ

j
 are fuzzy on ideal

sets.

Proof. Let ∅ ≠ A, B ∈ I(X), such that A ⊆ B. Then, {μ
 
({x}) : x∈A} ⊆{μ ({x}) : x ∈ B},

and so,  {1–μ
 
({x})  :  x  ∈ A} ⊆ {1–μ ({x})  :  x  ∈ B} .  Thus ,  for   j  ∈ J ,  μ c

j
 (  A)  =

inf{1–μ
j 
({x})} ≥ inf{1–μ

j 
({x})}= μ c

j
 ( B).

By Def inition 2.7, μ c
j 
 (∅) = 0 for each j∈J , and hence,  μ c

j 
 is a fuzzy on ideal set.

Now, since A ⊆ B and μ
j
∈ II(X), μ

j 
(A) ≥ μ

j 
(B) where j∈J. It follows that sup{μ

j
(A)| j

∈ J}≥ sup{μ
j
(B)| j ∈ J}, and so, (∨

j∈J 
μ

j
)(A) ≥ (∨

j∈J 
μ

j
)(B). Note that (∨

j∈J 
μ

i
)(∅) =

sup{μ
j 
(∅) | j ∈ J}= 0 ,  and hence,  ∨

j∈J 
μ

j
 is a fuzzy on ideal set. Similarly, we can

show that ∧
j∈J 

μ
j
 is a fuzzy on ideal set. 

MAPPINGS

In this section, we show that, given only a mapping between nonempty sets (not a

mapping between fuzzy on ideals sets), we can def ine the image and pre-image of

fuzzy on ideal sets. The following are preparatory def initions and results.

Definition 3.1. Let X and Y be nonempty sets, and let f : X → Y  be a mapping.  If  I(X)

and I(Y) are ideals on X and Y, respectively, we def ine f (I(X)) = {f (A) :  A ∈ I (X)} and

f –1(I(Y)) = {A : A ⊆ f –1 (B), B ∈ I (Y )},  where f (A) and f –1 (B) are the usual image and

pre-image of A ⊆ X and B ⊆ Y, respectively.

Theorem 3.2. Let X and Y be nonempty sets and let f : X → Y  be a mapping.  If I(X)

and I(Y) are ideals on X and Y, respectively,  then f(I(X)) and f –1(I(Y)) are ideals on

Y and X, respectively.

Proof. Since I(X) is an ideal on X, I(X)≠∅. It follows that f(I(X)) ≠∅. Let B
2
∈f (I(X)).

Then,  there exists A
2
 ∈ I (X), such that f (A

2 
) = B

2
. Let B

1 
⊆ B

2 
.  Now,  let A

1 
= A

2 
 ∩ f –1 (B

1
).

Then, A
1
 ⊆ A

2
 and  f (A

1
) = B

1
 . Note that A

1
 ∈ I (X), since it is a subset of A

2
∈ I (X). Thus,

x∈Bx∈A
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B
1
 ∈ f (I (X)). Next, suppose that B

1
, B

2
 ∈ f (I (X)), then there exist A

1
, A

2
 ∈ I (X),

such that  f (A
1
 ) = B

1
 and  f (A

2
) = B

2
 .  Now,  A

1 
∪ A

2 
∈ I (X),  since  I (X) is an ideal. Thus,

B
1 
∪ B

2 
 = f (A

1
) ∪ f (A

2
) = f (A

1
 ∪ A

2
)∈ f (I (X)). Therefore,  f (I (X)) is an ideal on Y. Since

I (Y) is an ideal on Y, I(Y) ≠ ∅. It follows that f –1 (I(Y)) ≠ ∅. Let A
2
 ∈ f –1(I(Y)). Then,

there exists  B
2
 ∈ I(Y) such that A

2
 ⊆  f –1(B

2
) . Let A

1
 ⊆ A

2 
. Then, we also have A

1
 ⊆ f –1(B

2
),

and thus,  A
1
 ∈ f  –1(I(Y)) .  Next,  suppose that A

1
, A

2
∈ f  –1(I(Y)) ,  then there exist

B
1
, B

2
∈ I(Y) ,  such that A

1
 ⊆ f –1(B

1
) and A

1
 ⊆ f –1(B

2
). Since B

1
∪B

2 
∈ I(Y), I(Y) being an

ideal on Y, we have A
1
∪A

2 
⊆ f –1(B

1
∪B

2
) , then A

1
∪A

2 
⊆ f –1 (I(Y)).  Thus,  f –1 (I(Y)) is an

ideal on X . 

The next def inition def ines the image and pre-image of fuzzy on ideal sets out of

an ordinary mapping, and the next proposition proves that it is well-defined.

Definition 3.3. Let X and Y be nonempty sets, and let f : X → Y  be a mapping. Let μ ∈ II(X)

and σ ∈ II(Y) for some ideals I (X) and I (Y) of  X and Y, respectively.  Def ine the image

of μ, denoted by f [μ], and the pre-image of σ, denoted by f –1[σ], as follows:

i.  f [μ] : f (I(X)) →I , where for B
 
∈ f (I(X)),  f [μ](B) = sup μ

 
(A), where

S
B
 = {A∈ I(X)) : f (A) = B};  and

ii. f –1[σ ]:f –1(I(Y))→I, where for A ∈ f –1(I(Y)),  f –1[σ ] (A) = (σ ° f
 )(A).

Proposition 3.4. Let X and Y be nonempty sets, and let  f : X → Y be a mapping.  Let

μ ∈ I I(X)  and σ ∈ II(Y). Then,  f [μ] and f  –1[σ ] are fuzzy on ideal sets on Y and X,

respectively.

Proof.  We f irst note that,  by Theorem 3.2,  f (I(X)) and f  –1(I(Y)) are ideals on Y and

X respectively.  If B ≠ ∅, then S
B
 = {∅}, and so,  f [μ]∅ = sup

A∈SB
 μ(A) = 0.  Also, for

∅ = A ∈ f  –1(I(Y)) , we have f (A) = ∅, and so, f  –1[σ]:f  –1(∅) = σ (f(A)) = 0 . Now, let

∅ ≠ B
1
, B

2
∈ f (I(X)), such that B

1 
⊆ B

2 
. Then, for A

1
, A

2
∈I(X) , such that f (A

1
)=B

1
,  f (A

2
)=B

2 
,

and A
1 
⊆ A

2 
, we have μ (A

2
) ≤ μ (A

1
) , since μ is a fuzzy on ideal set. Hence, sup

A∈SB
2

μ (A)

≤ sup
A∈SB1

μ  (A), and so,  f [μ](B
2
) ≤ f [μ](B

1
). Now, for ∅ ≠ A

1
, A

2
∈ f –1(I(Y)), such that A

1

⊆ A
2 
,  we have f (A

1
) ⊆ (A

2
) . Hence, σ f (A

2
)) ≤ σ  f (A

1
)), since σ  is a fuzzy on ideal

set. Consequently,  f –1[σ ](A
2
) ≤ f  –1[σ ](A

1
). Therefore,  f [μ] and f –1[σ ] are fuzzy on

ideal sets on Y and X, respectively. 

A∈SB
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FUZZY ON IDEAL HAHN-BANACH THEOREM

Rhie and Hwang (1999) fuzzif ied the analytic form of the Hahn-Banach Theorem.

They built the idea from the works of Katsaras (1981, 1984) and Katsaras and Liu

(1977) on fuzzy vector spaces and fuzzy seminorm, and the work of Krishna and

Sarma (1991) on the generation of the fuzzy vector topology from an ordinary

vector topology. We state and prove the analytic form of the Hahn-Banach theorem

in the fuzzy on ideal setting. This can be seen as a generalization of the fuzzy Hanh-

Banach Theorem by Rhie and Hwang (1999). We follow the ideas and the flow of

proof by Rhie and Hwang (1999).

We recall f irst that for a vector space X over      and A, B ⊆ X, we have A+B={a+b:a∈A

and b∈B} and for         , tA = {ta:a∈A}.

Let I(X) be an ideal on X. We def ine an associated set X
0
 by X

0 
= {a:{a} ∈ I(X)}.

That is,  X
0
  is the set out of the singleton subsets of I(X).  Note that X

0 
 ⊆  X.  For

∅ ≠ A∈I(X) , by the f irst property of an ideal, all singleton subsets of A are also in

I(X), and so, A ⊆ X
0 
. We want next that I(X) be closed under f inite addition and

scalar multiplication. The next proposition shows that it is enough to assume that

X
0
 is a linear subspace of X , such that X

0
∈ I (X).

Proposition 4.1. Let X be a vector space over     , and let X
0
 be a linear subspace of

X . If I (X) is an ideal of X, such that X
0
∈ I (X),  then for every A, B ⊆ X

0 
 and  every

         , we have tA, A+B∈I(X).

Proof. Let  A, B ⊆ X
0  

and          .  Since X
0
 is a linear subspace of X,  it follows that

tA = {ta : a∈A} ⊆ X
0 
 and A+B ={a+b : a∈A and b∈B} ⊆ X

0 
. Since X

0
 ∈ I(X), then any

subset of X
0
 is in I(X). That is, tA and A+B are in I(X) . 

To move forward we need to def ine f inite addition and scalar multiplication of

fuzzy on ideal sets, such that the result is also a fuzzy on ideal set.

Definition 4.2.  Let X be a vector space over     , and I(X) be an ideal on X , such that

X
0
 is a linear subspace of X and X

0
 ∈ I(X). For any μ, v ∈ II(X), we def ine μ+v as

follows: (μ+v)(∅)=0 and for ∅ ≠ A∈I(X),

Թ 

Թ 

Թ 

 

















ngleton)s not a si   (or A iotherwise.Axxv

n)a singleto (or A is  A={x};   ifXxxxvx

Av
xxx

},:}))({{(inf

},,:})({})({{sup

=))((

02121
=21







 

ݐ ∈ Թ 

ݐ ∈ Թ 

ݐ ∈ Թ 
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In the case A = {x} in Def inition 4.2, we note that,  since X
0 
is a linear subspace of

X , we can always express x as x = 0 + x , and thus, the set under the sup is never

empty.

Definition 4.3.  Let X be a vector space over     , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0
 ∈ I(X). For a scalar           and ∈ II(X) , we def ine tμ

as follows: (tμ)(∅) = 0 and for ∅ ≠ A∈I(X),

Թ 
ݐ ∈ Թ 

   

 












 A ={0}.i f t=0 andXyysup

{0}; Aif t=0 and

0;if tAt

At

,:})({

0,

,

=))((

0

1






Proposition 4.4.  Let X be a vector space over     , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0
∈I(X). If             and μ, v ∈ II(X), then tμ  and μ+v are

in I I(X).

Proof. We note that, by Def inition 4.3, we have (tμ)(∅) = 0 . Now, let ∅ ≠ A
1
,

A
2
∈I(X), such that A

1
 ⊆ A

2
 and          .  Let  t ≠ 0. Then,  and t-1 A

1
 ⊆ t-1A

2
. Note that

t–1A
1
, A

2
∈I(X) by Proposition 4.1. It follows that μ (t–1A

1
) ≥ μ (t–1A

2
) since μ ∈ II(X).

Suppose t = 0 and A
1
, A

2 
≠ {0}, we have (tμ)(A

1
) = 0 =  (tμ)(A

2
).  Now, for t = 0 and

A
1
, A

2
 = {0}, we have (tμ)(A

1
) = (tμ)(A

2
) . If t = 0, A

1
 = {0} and  A

2 
≠ {0} , then (tμ)(A

2
)

= 0 ≤ (tμ)(A
1
). Thus, tμ ∈ II(X).

Next, we show that μ + v ∈II(X).  By Def inition 4.2, (μ + v)(∅)=0. Let ∅≠ A
1
, A

2
∈I(X),

such that A
1
 ⊆ A

2
 . Suppose A

2 
is a singleton, then A

1
 must be a singleton. Then,

A
1 
=

 
{x}=A

2
 .  Notice that, (μ + v)(A

1
) = (μ + v)(A

2
). Now, if A

2
 is not a singleton, then

A
1
 is either a singleton or not. In any case, since A

1
 ⊆ A

2 
, we have{(μ+v)({x}):

x∈A
1
}⊆{(μ+v)({x}):  x∈A

2
}.

Thus, inf{(μ+v)({x}): x∈A
1
} ≥ inf{(μ+v)({x}): x∈A

2
}. Consequently, (μ+v)(A

1
) ≥

(μ+v)(A
2
). Therefore, μ + v ∈ I I(X).

Next, we need to def ine a fuzzy on ideal seminorm. We begin by def ining its

properties.

Թ 
ݐ ∈ Թ 

ݐ ∈ Թ 
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Definition 4.5.  Let X be a vector space over    ,  and I(X) be an ideal on X, such that

X
0 
is a linear subspace of  X and X

0
 ∈ I(X). A ρ ∈ I I(X)  is said to be

i. convex if ρ (tA+(1–t)B) ≥ min{ρ (A), ρ (B)} for every t∈ [0,1] and ∅ ≠ A, B

∈ I(X);

ii. balanced if (tρ)(A) ≤ ρ (A)  for every            with | t |≤ 1 and ∅ ≠ A ∈ I(X);

iii. absorbing if sup
1>0 (tρ)(A)=1 for every ∅ ≠ A ∈ I(X).

Definition 4.6.  Let  X  be a vector space over     , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0
∈I(X) . A ρ ∈ I I(X) is called a fuzzy on ideal

seminorm if it is convex, balanced, and absorbing.

Associated with a fuzzy on ideal seminorm, we define below an important mapping,

and then we prove that it has the properties of an ordinary seminorm.

Definition 4.7. Let X be a vector space over    , and I(X)
 
 be an ideal on X, such that

X
0 
is a linear subspace of X and X

0
∈I(X) . Let ρ be a fuzzy on ideal seminorm. For

each ε  ∈ (0,1) , we def ine Pε : I(X)→[0,+∞)  by Pε (∅) =  0 and for ∅ ≠ A ∈ I(X) ,

Pε (A)=inf{t>0:(tρ)(A)>ε}.

Observe that Pε  is well-def ined since ρ  is absorbing. Moreover, 1= sup
1>0 

(tρ)({0})

= sup
1>0 

(ρ)(t-1{0})=sup
1>0 

(ρ)({0}) implies that ρ ({0})=1.

Remark 4.8. For 0<ε
1
<ε

2
<1, we have {t>0:(tρ  (A)ε

2
}⊆{t>0:(tρ) (A)>ε

1
} . Hence,

Pε (A)=inf{t>0 :  (tρ)(A)>ε
1
}≤ inf{t>0 : (tρ)(A)>ε

2
}=Pε2

 (A). That is, {Pε} is increasing

in ε .

Theorem 4.9. Let X be a vector space over    , and I(X) be an ideal on X, such that X
0

is a linear subspace of X and X
0
∈I(X) . If ρ is a fuzzy on ideal seminorm, then, for

each ε ∈ (0,1) , we have Pε satisfying the following properties:

i.               ,  for all             and ∅ ≠ A ∈ I(X) ;

ii.                                     , for ∅ ≠ A,B ∈ I(X) .

Թ 

ݐ ∈ Թ 

Թ 

Թ 

Թ 
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Proof.

i. Let ε ∈(0,1) and ∅ ≠ A ∈ I(X). If α = 0, then αA = {0}. Observe that

Let α ≠ 0. Since ρ is balanced, (tρ )(A) ≤ ρ (A) for | t |≤1.  In particular,  t = –1

implies (–ρ)(A) ≤ ρ (A), and so,                          .  Now,

Hence,                                      . Next, consider that

                                                                                      .

It follows that                               . Thus,                                     .

Consequently,                                         Then,

ii. Let ∅ ≠ A, B ∈ I(X) ,  r  ∈{t >0 : (tρ)(A) >ε}, and s  ∈{t >0 : (tρ)(B) >ε}.

Then,   (rρ)(A) >ε and (sρ)(B) >ε.  Now, by convexity of ρ ,  we have

         .

It follows that and so,

.                                             . Hence, we have
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Thus,

Therefore,                                        . 

The next theorem shows that the inf imum of the Pε has properties similar to it.

Theorem 4.10. Let X be a vector space over    , and I(X)  be an ideal on X , such

that X
0 is a linear subspace of X and X

0
 ∈ I(X). Let ρ be a fuzzy on ideal seminorm.

Then, the function P:I(X)  → [0,+∞) def ined by P(∅)=0 , and for ∅ ≠ A ∈ I(X) ,

P(A) = inf{Pε (A):ε ∈(0,1)} satisf ies the following properties:

i .                            for all           and

ii.                                     , for all                        .

Proof. The f irst property follows directly from the f irst property in Theorem 4.9.

Let ∅ ≠ A,B∈I(X). Since {Pε} is increasing in ε , for every ∅ ≠ A∈I(X) ,  P(A) =

inf{Pε (A):ε ∈(0,1)} = limε→0 
Pε (A) . Thus, P(A+B)=inf{Pε (A+B):ε ∈(0,1)}≤ inf{Pε (A)+Pε

(B):ε ∈(0,1)} = lim{Pε (A)+Pε(B)} = lim{Pε (A)+lim
 
Pε(B)=P (A)+P (B). 

The next two theorems give us the relationship between fuzzy on ideal seminorms

and its associated mappings having the ordinary seminorm properties. It is our key

to tap on the classical Hahn-Banach Theorem that will be used in the proof of our

fuzzy on ideal Hahn-Banach Theorem.

Theorem 4.11. Let X be a vector space over    , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0
 ∈ I(X) . Furthermore, let ρ

1
 and ρ

2
 be two fuzzy

on ideal seminorms. If for every A∈I(X) , ρ
1
(A) ≤ ρ

2
(A), then for every ε ∈(0,1),

P1(A) ≥ P2(A) for all A∈I(X) .

Proof. If for every A∈I(X) , ρ
1
(A) ≤ ρ

2
(A), then for every A∈I(X) and t > 0, (tρ

1
)(A) =

ρ
1
(t-1A) ≤ ρ

2
(t-1A) = (tρ

2
)(A). Let ε ∈(0,1) and ∅ ≠ A∈I(X) . Observe that {t>0:(tρ

1
)(A)

>ε} is a subset of {t > 0:(tρ
2
)(A)>ε}. Hence, inf{t > 0:(tρ

1
)(A) >ε} ≥ {t > 0:(tρ

2
)(A)>ε}.

Thus, P1(A) ≥ P2(A). 
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Remark 4.12. The converse of Theorem 4.11 does not always hold. To see this, let

X =  and I(X) = P(   ) . Def ine ρ
1
 and ρ

2
 as follows:

One can check that ρ
1
 and ρ

2
 are fuzzy on ideal seminorms and                  for ε ∈ (0,1),

but ρ
1 
≤ ρ

2
and ρ

2 
≤ ρ

1
.

The following *-property will give us a suff icient condition for the converse to

hold.

Definition 4.13. Let X be a vector space over    , and let I(X) be an ideal on X, such

that X
0 
is a linear subspace of X.  Let X

0 
∈ I(X). Let ρ  be a fuzzy on ideal seminorm.

We say that ρ has the *-property if, for every ∅≠A∈ I(X), we have ρ (A) = inf{ρ (tA):0 < t < 1}.

An example of a fuzzy on ideal seminorm with the *-property will be given later. It

is a crucial part of our main theorem. In the meantime, let us prove that, with the

*-property, the converse of Theorem 4.11 will hold.

Lemma 4.14. Let X be a vector space over    , and I(X) be an ideal on X, such that X
0

is a linear subspace of X. Let X
0 
∈ I(X).  Let ρ be a fuzzy on ideal seminorm with the

*-property.  If ∅≠A∈ I(X) and ρ (A)<ε <1, then Pε (A)>1.

Proof. Let ∅≠A∈ I(X) and ρ (A)<ε <1. Since ρ is balanced being a fuzzy on ideal

seminorm ,  ( tρ ) (A )≤ρ (A ) < ε  fo r  | t |≤ 1 .  Thus ,  Pε  (A ) = i n f{ t> 0 : ( tρ ) (A ) >ε} =

inf{t>1:(tρ)(A)>ε}≥1 .

We are left to show that Pε (A)≠1. Suppose Pε (A)=1. Then, (tρ)(A)>ε for all t >1.

S ince  ρ  has  the  *-proper ty, ρ (A )= in f{ρ ( tA ) :0< t<1}= in f{( t -1ρ ) (A ) :  0< t<1}

=inf{(tρ)(A):t >1}≥ε .  However, this is a contradiction, since ρ (A) < ε . Therefore,

Pε (A)>1. 
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Theorem 4.15. Let X be a vector space over    , and let I(X) be an ideal on X, such

that X
0 
is a linear subspace of X. Let X

0 
∈ I(X). Let ρ

1
 and ρ

2
 be two fuzzy on ideal

seminorms, with ρ
2
 having the *-property. If for every ε

 
∈ (0,1),  we have

for every A∈ I(X), then                       for every A∈ I(X).

Proof. If A = ∅, then by def inition,                                                    .  Suppose that

for every ε
 
∈ (0,1),                          ,                      and that there exists a B∈ I(X), such

that ρ
2
(B) < ρ

1
(B) .  Let ρ

2
(B) < ε < ρ

1
(B).  If t = 1, then tρ

1
(B) = ρ

1
(B) > ε,  and so,

                                               . Since ρ
2
 is balanced,                                                   .

By Lemma 4.14, . Thus,                  . This is a contradiction to our

assumption that for every  ε
 
∈ (0,1) , ,                    . Therefore, we must

have                      ,                   . 

We now def ine and prove an important fuzzy on ideal seminorm with the *-property.

We begin with the following def inition.

Definition 4.16.  Let X be a vector space over    , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0 
∈ I(X).  Let M be also a linear subspace of X and

f:M→    be a linear functional. Furthermore, let I(M) be an ideal of M , such that

M
0 
∈ I(M) .  We associate with f the function                                        def ined  by

, and for  ,  . Let

We  define                                   by  χBf (∅) = 0,  and for ∅ ≠A∈ I(X),

Observe that, for  t > 0 ,                             .  For  convenience,  whenever  we  have

                    , we let the                                         and say that the

                     .

Theorem 4.17. Let X be a vector space over    , and I(X) be an ideal on X, such that

X
0 
is a linear subspace of X and X

0 
∈ I(X). Let M be also a linear subspace of X and

f:M→ be a linear functional. Furthermore, let I(M)  be an ideal of M, such that

M
0
∈I(M) . Then, χBf  

is a fuzzy on ideal seminorm with the *-property .

Proof. We f irst show that χBf 
 has the *-property. Let ∅≠A∈ I(M). Suppose that

                      Then,                                       . Then, for all 0 < t < 1, sup
x∈Α|f(tx)|=

t sup
x∈Α|f(x)|≤ t<1. Hence, χBf 

(tA) = 1, for all 0 < t < 1, and so, inf{χ
Bf

(tA):0 < t < 1}= 1.

Suppose that  χ
Bf 

(A) = 0.  Then, π
f 
(A) = sup

x∈Α|f (x)| >1. Assume inf{χ
Bf

(tA)|0 < t < 1}= 1.

It follows  that,  for  all 0<t<1,  χBf  
(tA) =1 ,  implying  that  π

f 
(tA) = sup

x∈Α| f(tx)| =

t sup
x∈Α|f(x)|≤1. Thus, for all 0< t <1, sup

x∈Α| f(x)|≤  . Consequently,

Թ 
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for all η >0 . Since η is arbitrary, sup
x∈Α|f(x)| ≤ 1, which contradicts to χ

Bf
(A) = 0.

Hence, there exists 0 < t < 1, such that χBf 
(tA) = 0, that is inf{χBf 

(tA):0 < t < 1}= 0.

Therefore, χBf  
has the *-property.

Next we show that it is a fuzzy on ideal set. It is enough to show the reverse

inequality. Let ∅ ≠ A,B ∈ I(M), such that A ⊆ B. If χχBf 
(B) = 0, then the reverse

inequality automatically follows. Suppose that χ
Bf

(B) = 1. Then, π
f 
(B) = sup

x∈Β | f (x)| ≤1.

Now, π
f 
(A) = sup

x∈Α | f (x)| ≤ sup
x∈Β | f (x)| ≤ 1.  Hence, χBf 

(A) = 1. Thus,  χBf 
(B) ≤ χBf

(A).

We are left to show that χBf
 is convex, balanced, and absorbing.

Let ∅ ≠ A,B ∈ I(M). If χBf 
(A) = 0 or χBf 

(B) = 0, then the inequality for convex is

clearly satisf ied. Suppose that A,B ∈ B
f 
, that is, χBf 

(A) = 1 and χBf
(B) = 1. Then,

s u p
x ∈ Β |  f  ( x ) |  ≤ 1  and sup

x∈Β |f (x)| ≤1.  It follows that, for each 0 ≤ t ≤1, since f is

linear, we have

                    ≤ t + 1–t = 1.

Thus, χBf
 (tA+(1–t)B) = 1, and so χ

Bf
 is convex.

Let ∅ ≠ A,B ∈ I(M) and |t|  ≤ 1. If (tχχBf
)(A) = 0 , then the inequality for balanced

is clearly satisf ied. Suppose (tχ
Bf

)(A) = 1 . Then for each t with |t |  ≤  1 , we have

. Hence, sup
x∈Α| f(x)|≤| f(x)|≤|t| ≤ 1, and so, χχBf

 (A)= 1.

Consequently, χBf
 is balanced. Lastly, let ∅ ≠ A ∈ I(M) . If π

f 
(A) = sup

x∈Α | f (x)| < +∞,

take t
0 

=  sup
x∈Α |  f(x) |  ≤ |  f(x) |  .  Then,                                                   .  Thus,

(t
0
χBf

) (A)=1. Therefore,  supt >0
 (tχBf

)(A)= 1. If π
f 
(A) = sup

x∈Α|f (x)| ≤ +∞, we have

remarked prior to this theorem that supt >0
 (tχBf

)(A)= 1. Thus, χBf
 is absorbing. 

Finally, we have the fuzzy on ideal Hahn-Banach Theorem.

Theorem 4.18. Let X be a vector space over    , and I(X) be an ideal on X, such that

X
0
 is a linear subspace of X and X

0 
∈ I(X). Let M be also a linear subspace of X, and

I(M) be an ideal of M , such that M
0 
∈ I(M) and M

0
 ⊆ X

0
. Let ρ ∈ II(X) be a fuzzy on

ideal seminorm. If f:M
0
→     is a linear functional, such that χBf 

(A) ≥ ρ (A) for all

A
 
∈ I(M) , then there exists a linear functional g:X

0 
→  , such that:

i. f(x) = g
 
(x), x ∈M

0
;  and

ii.  χ
Bg

(A) ≥ ρ (A) for all A∈I(X).
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Proof.  Let f be a linear functional on M
0
, such that χBf 

(A)  ≥ ρ (A)  for all A∈I(M) .

Note f irst that χBf
 is a fuzzy on ideal seminorm with the *-property. In Theorem

4.11, let χBf
=ρ

2
 and ρ=ρ

1
. Then, the corresponding Pε

2 is given by:  for any ∅ ≠ A∈ I(M)

and ε ∈(0,1),

                           Pε
2(A) =inf{t>0:tρ

2
(A) >ε}

=inf{t>0:ρ
2
(A/t) >ε}

=inf{t>0:ρ
2
(A/t) =1}, since ρ

2 
is a characteristic function

=inf{t>0:π
f 
(A/t) ≤1}, that is (A/t) ∈ B

f

=inf{t>0:π
f 
(A) ≤t}, since f is linear

=π
f 
(A).

Thus, by Theorem 4.11, for all ε ∈(0,1), Pε
2(A)  = π

f
(A) ≤ Pε

1(A)  for all ∅ ≠ A ∈ I(M),

where Pε
1(A) =inf{t>0:tρ(A) >ε}for all ∅  ≠ A ∈ I(X). Observe that we are considering

here A ∈ I(X), instead of just I(M). This can be done because ρ ∈ II(X). By the last

inequality,  π
f 
(A) = sup

x∈Α | f (x)| ≤ P(A) = inf{Pε
1(A):ε ∈(0,1)} for all ∅ ≠ A ∈ I(M).  In

particular, |f (x)| ≤ P({x}) , for all x ∈ M
0
.

Note that by Theorem 4.10, P restricted to the singletons can be seen as a sublinear

functional on X
0
. Hence, by applying the classical Hahn-Banach Theorem, there

exists a linear functional g:X
0 
→     such that:

i. f(x) = g
 
(x), x ∈ M

0
;  and

ii. |g
 
(x)| ≤ P({x}), for all x ∈ X

0 
.

Now, let ∅ ≠ A ∈ I(X). Note f irst that, by the def inition of P and the reverse

inequality  satisf ied  by  ρ,  if  x ∈ A,  then  P ({x}) ≤ P(A).  Hence  by (ii),  x ∈ A,

|g
 
(x)| ≤ P(A).  Thus, we have sup

x∈Α |g(x)| = π
g 
(A)≤ P(A) for all   ∅ ≠ A ∈ I(X).  Let χ

Bg 
=ρ

2

in Theorem 4.15.  Then,  the corresponding Pε
2 is given by:  for any ∅≠A∈ I(X) and ε ∈(0,1),

                           Pε
2(A) =inf{t>0:tρ

2
(A) >ε}

=inf{t>0:ρ
2
(A/t) >ε}

=inf{t>0:ρ
2
(A/t) =1}, since ρ

2 
is a characteristic function

=inf{t>0:π
g
(A/t) ≤1}, that is (A/t) ∈ B

g

=inf{t>0:π
g 
(A) ≤t}, since g is linear

=π
g
(A).
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Thus, for all ε ∈(0,1), Pε
2(A)  ≤ P(A) = inf{Pε

1(A):ε ∈(0,1)} for all ∅ ≠ A ∈ I(X). Hence,

for all ε ∈(0,1),  Pε
2(A)  ≤ Pε

1(A) = inf{t>0:(tρ)(A) >ε} for all ∅ ≠ A ∈ I(X). Since χ
Bg

has the *-property, by Theorem 4.15, we have χ
Bg

(A)  ≥ ρ (A) for all A ∈ I(X). 
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