An Asynchronous | EEE Floating-Point Arithmetic Unit

Joel R. Noche*

Affiliation when work was started and completed:
Department of Electrical and Electronics Engineering
College of Engineering, University of the Philippines, Diliman
joel.noche@up.edu.ph
Present affiliation:
Department of Mathematics and Natural Sciences
College of Artsand Sciences, Ateneo de Naga University, Naga City, Camarines Sur
jrnoche@adnu.edu.ph
Date submitted: July 29, 2005; Date accepted: May 11, 2006

Jose C. Araneta
(deceased)
Department of Electrical and Electronics Engineering
College of Engineering, University of the Philippines, Diliman

ABSTRACT

An asynchronous floating-point arithmetic unit is designed and tested at the transistor level using
Cadence software. It uses CMOS (complementary metal oxide semiconductor) and DCV S (differential
cascode voltage switch) logicin a0.35 pm process using a 3.3 V supply voltage, with dual-rail dataand
single-rail control signals using four-phase handshaking.

Using 17,085 transistors, the unit handles single-precision (32-bit) addition/subtraction, multiplication,
division, and remainder using the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic, with
rounding and other operationsto be handled by separate hardware or software. Division and remainder
are done using arestoring subtractive algorithm; multiplication uses an additive algorithm. Exceptions
are noted by flags (and not trap handlers) and the output is in single-precision.

Previouswork on asynchronous floating-point arithmetic units have mostly focused on single operations
suchasdivision. Thisisthefirst work to the authors' knowledgethat can perform floating-point addition,

multiplication, division, and remainder using acommon datapath.

Key words: Asynchronous logic circuits, floating point arithmetic, calculation times

*Corresponding author

12 Science Diliman (July-December 2007) 19:2, 12-22

INTRODUCTION

Asynchronouscircuits, digital logic circuitsthat do not
use aglobal clock signal, have attracted attention this
past decade due to their potential advantages over
synchronouscircuits (Hauck, 1995), (van Berkel et al.,
1999), (Sutherland & Ebergen, 2002). Asynchronous
circuits automatically adapt to changing physical
conditions, operating faster when the temperature is
lower or when the supply voltage is higher. They
consume power only when and where performing
computations. They allow robust mutual exclusion of
signals, making them ideal for handling external inputs.
They have better noise and electromagnetic
compatibility properties. They exhibit no clock skew,
and can thus be designed modularly. They arethusideal
for portable, low-power, wireless applicationsthat are
activated by external signals. Asynchronous circuits
have been used for some parts of adigital hearing aid
(Nielsen & Sparsg, 1999) and a pager (Kessels &
Marston, 1999), among others.

Some applications require accurate calculations to be
made quickly. Although real numbers can be handled
by integer arithmetic hardware (Grehan, 1988),
implementing the format known as floating-point in
hardware greatly improves performance. A binary
floating-point standard proposed by IEEE (1985) is
widely adopted, enabling software devel opersto create
easily-portable, highly reliable code. The standard
defines four different formats; the one with the least
number of bits (32) iscalled single-precision. Floating-
point numbers are represented as (-1)S x F x 25, where
Sis the sign bit, F is the significand, and E is the
exponent. |If the floating-point number is normalized,
(i.e, 1 < F < 2), then the most significant bit of the
significand is always 1 and can be removed to save
space (packed). For single-precision, theresultisa23-
bit fraction f. The signed exponent is encoded as an
unsigned number e called the exponent field using a
bias representation, with a bias of 127 for single-
precision (i.e.,, E=e- 127). The standard also defines
special quantities: denormal numbers (valueswhich are
less than the smallest normalized values), '‘Not a
Number's (results of invalid operations), positive and
negative zeroes, and positive and negativeinfinities.

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous |EEE Floating-Point Arithmetic Unit

Previouswork on asynchronousfloating-point arithmetic
units have mostly focused on single operations such as
division (Williams & Horowitz, 1991), (Matsubara &
Ide, 1997), (Won & Choi, 2000). Thework described
in this paper isthefirst to the authors knowledge that
can handle |EEE floating-point addition/subtraction,
multiplication, division, and remainder using acommon
datapath. To achieve this goal with the available
computing resources, we chose to use single-precision
arithmetic, with rounding and other operations to be
handled by separate hardware or software. To minimize
circuit size, division and remainder are done using a
restoring subtractive algorithm and multiplication uses
an additive algorithm (Noche, 2003). Thus, the
architecture is 'serial.’ Exceptions are noted by flags
(and not trap handlers) and the output is in single-
precision.

Thedatapath usesdual-rail DCV S (differential cascode
voltage switch) logic, and the control unit usesCMOS
(complementary metal oxide semiconductor) logic. A
trangstor-level design of the unit using a0.35 um process
anda3.3V supply voltageisdesigned and tested using
Cadence software (1C4.46 package for Sun Solaris
5.8). Virtuoso Schematic Editing and Virtuoso Symbol
Editing are used to create the transistor-level
schematics. Testing is done using the AffirmaAnalog
Circuit Design Environment.

MATERIALSAND METHODS
Basic Operation

Theunit hasthefollowing inputs: two 32-bit datainputs
(the operands), four arithmetic control (request) signals
(one for each operation), four rounding mode control
signals, and five flag reset signals. The outputs are: a
32-bit data output (the result), asignal acknowledging
correct receipt of the operands (ain), asignal indicating
that the output isready (aout), fiveflags, and thesignals
acknowledging their resets.

The external system first makes the operands active,
thenwaitsfor ainto becomeactive. (Whentheexternal
system later makes the data inputs inactive, ain will
become inactive.) It then requests the operation to be
performed by making the corresponding arithmetic

13

Noche and Araneta

control signal active. The unit processes the data and
any exceptions set the corresponding flags. After the
result is computed, aout becomes active. The external
system then makes the arithmetic control signal
inactive. This deactivates the unit, making the result
and aout inactive. It is now ready for the next set of
operands and the next arithmetic operation.

The flags are always active and once set, they remain
set until explicitly cleared. They can only be set by the
unit, and can only be reset by the external system.

Overview of the Datapath

Figure 1 shows ablock diagram of the unit's datapath,
with the control unit and some control signals hidden
for simplicity. The complete circuit schematicsarein
Noche (2003). Operands X and Y, and result Z are
each composed of asign bit, an exponent field, and a
fraction (e.g., X= S, e, f,).

The main building blocks of the datapath are the
registers and the adders. SR latches are used in the
control unit and also for the exception flags. Registers
for the exponent cal culations do not require any shifting,
so0 SR latches (with completion signals) are also used
there. Although one 9-bit register E is enough for the
addition, multiplication, and division operations, the
remainder operation requires two additional 9-bit

el el

ERERREE.
Mﬂ

=
L

Figure 1. Block diagram of the datapath

14

registerse, and e, initsinitial operand normalization.
Significand calculationsinvolveleft and right shifting,
so significands are stored in shift registers (modified
versions of those in Kishinevsky et al. (1994)). Pisa
25-bit bidirectional shift register connected to A, a24-
bit bidirectional shift register with an additional round
bit. B isa25-bit shift-left register.

A 9-bit carry look-ahead (CLA) adder (Ruiz, 1998),
(Ruiz, 2000) is used for exponent calculations, and a
25-bit CLA adder handles all the required significand
calculationsfor all operations. Special signalsindicate
if the result is zeroor -1, and these wereused in
certain cases as completion signals. For example, the
unit's remainder algorithm checks for the case where

8- e =-1

DCV S multiplexersare used to select the inputsto the
registers and adders. The multiplexers do not have
completion signal s because the blockstheir outputsare
connected to work correctly whether the outputs are
early or late. When two dual-rail signal paths merge
into one and both will never be active at the sametime,
OR gatesare used instead of multiplexersto minimize
the number of control signals needed. For example,
the output of the 25-bit adder is connected to OR gates
because the control signalsto enable the 25-bit adder
and multiplexer 5 will never be high at the same time.

Control Building Blocks

Therest of the building blocks are used in the control
unit. These perform handshaking, counting, and
conditional branching. The C-element is a basic
asynchronous circuit building block, a device whose
output changes to avalue (logic 0 or 1) only when all
itsinputsarethat value. Asidefrom C-elements (Shams
etal., 1998), SR-latches, and Boolean | ogic gates, most
of the control circuitry of the unit uses building blocks
well-suited for four-phase signaling and dual-rail data:
decide, do, twice, and thrice. The last three are
described by their signal transition graphs (Kondratyev
et al., 1998) and implemented as complex CMOS gates
using the software PETRIFY (Cortadellaet a., 1997).
PETRIFY is also used to create the control circuitry
for the shift registers, details of which are in Noche
(2003).

Science Diliman (July-December 2007) 19:2, 12-22

Thedecide Building Block

Thedecide building block hastwo variants: thedecide
early andthedecide late. Their symbolsare shownin
Figure 2. Whenever the request on becomes active,
thefirst of the inputsti or fi to go high decides which
of the outputs (t or f) will go high. Only one of the
outputs can go high at any time, and it goes and remains
high only when on is active. Once the 'decision’ is
‘made,’ it cannot be changed or taken back. For
example, if ti and on go high, then t goes high and
remains high even if ti goes low, or fi goes high, or
both (as long as on remains active).

An Asynchronous |EEE Floating-Point Arithmetic Unit

Thedo Building Block

Thedo building block hastwo variants: thedo unique
and the do guarded. Their symbols are shown in
Figures 4a and 4b. The do guarded block is a do
unique block with an attached C-element as shownin
Figure 4c. Figure 5 shows the STG of the do unique
building block. Thedo unique building block isthesame
as the Q-element of Martin (1990).

. —+

(11 -4

do

e

r— (10

{a)

" —+

a1 =

do

= 10

C
— a0

(b}

" —-

al -+

do

<

(c)

o

Ly

=1

tr —» t fr —»
on— 7 pi—e)}
fi—m f fi—w

{a)

(b)

Figure 2. Symbols of (a) decide early, (b) decide late

Transistors driven by input signals that are the last to
change are placed nearer the outputs to improve
performance. The decide early block assumes that
the data input becomes active and valid before on
becomes active; decide late assumes that the data
input becomesactiveand valid after on becomesactive.
Figure 3 showsthetransistor-level schematics of both
versions. Theinputsti and fi (and their corresponding
outputst and f) are interchangeable.

— —
B _x T o
ti — I
Et’ %ﬁ
{a) {b)

_|
fi —|

|
1 I

Figure 3. Transistor-level schematics of (@) decide early, (b)
decide late

Science Diliman (July-December 2007) 19:2, 12-22

Figure 4. Symbols of (a) do unique, and (b) do guarded; (c)
structure of do guarded

M+ —me (0t —e g0t — 10-

T
‘_'___,_._ﬂ—-'-""" ao-
al- - ri- -— alt

Figure 5. STG of do unique

Thetwice and thrice Building Blocks

The symbolsand STGs of thetwice and thrice building
blocks are shownin Figures 6, 7, and 8.

A Control Circuit Example

An example illustrates how these building blocks are
used toimplement agorithms. Thea gorithmfor division
isasfollows. The sign of theresult isthe exclusive-or
of the operand signs. Special cases (those with
operandsor results of zero, infinity, or 'Not aNumber")
are handled first. For ordinary cases, the second
exponent is subtracted from the first and the bias is
added to this. Register Aisset to zero. Significand F,
is placed in register P, and F, is placed in B. The

ml — = 7 (A = I

-2

-
2

iy

— el

(a)

y -

M— L0

Figure 6. Symboals of (a) twice, (b) thrice

(b)

15

Noche and Araneta

[—ae [0F — g0+ —e [0- —t 40— 1

“\
‘_,_,_A-"""'-'f "
Ul- # §0- d— [0- — 0T 4 [0]
Figure 7. STG of twice

operandsarethen normalized. Thus, register Bisshifted
left (and the preliminary exponent is incremented
accordingly) until its most significant bit is 1. The
contents of P are shifted left (and the preliminary
exponent is decremented accordingly) until the
significand thereisnormalized. The connected registers
P and A arethen shifted | eft 24 times. For each iteration,
if thedifference P - Bispositive, thenitiswrittento P
and therightmost bit of A (bit 0) issetto 1. Thisstepis
done 25 times. After this, if the significand in Ais not
normalized, then A is shifted left once and the
preliminary exponent decremented. If the difference P
- Bispositive, thenitiswrittento P and bit O of Aisset
to 1. Theresult (withthe significand in A, bit 0 of Aas
the guard bit, and the round bit deduced from P) isthen
passed to the rounding unit.

[T+ e 105 —ae Q0% —Be [0- —e 0~ —e [0+ —e J0F e
Ij-
li- o— 0 — [0- a— 101 o= [0+ A J0- 4— [0- *”f

Figure 8. STG of thrice

Figure 9 shows a part of the division algorithm and
Figure 10 shows one implementation. The example
shows sequential and parallel operations; while-loop,
for-to-do-next, and if-then constructs; and how
subroutines are handled. As line number n in the
algorithmisreached, signal nextn goes high. When the
algorithmis completed, all the nextn signalsgo low in
succession.

Notethat thecircuitry generating signalsdid2 and did4
are the same (a 2-input C-element whose inputs are
aB and cE). These two C-elements can be replaced
by a single C-element generating the signal did2or4,
which replaces all instances of did2 and did4. If so,
then a transition on did2or4 would be interpreted as
transitions on both did2 and did4, resulting inincorrect
behavior. Thedo building blocksgenerating thesignals

16

do2 and do4 should thus be do guarded blocks, so
only the block that made the request would be
acknowledged.

1 Fe—ex —ey: A—0; P10, Fx:
2 FE— EF 4127, B« 0, Fy:

3 while (bit(21, B) = 0)

4 shiftleft B.0: F «— F + 1;

5 loop

6 while (bit{24, P) = 0)

7 shiftleft /2,0; B — F — 1:

8 loop

9 for f.'rﬁ."r-J.'J «— 1 to 24 do

10 calculate /P — B

11 if (P — B =10) then

12 PP —B:;bit(0, A) — 1:
3 fi

14 shiftleft P, A. 0

15 next

Figure 9. Sample algorithm

RESULTSAND DISCUSSIONS

The unit uses variable-latency algorithms that are
implemented using variable-latency circuits.
Completion times are thus expected to be data
dependent Because limited resources prevented the
implementation of the rounding unit, the completion
times reported here do not include the time needed to
correctly round the result. The algorithmsfor the four
operations and for rounding arein Noche (2003).

What Affects Completion Times

Arithmetic operations start by unpacking denormalsand
checking for 'Not a Number's. This takes the same
timet for al operations. Next, cases with operands
or results of zero or infinity arechecked. Thedifferent
operations have different special cases, so this step
takes different times: t__ for addition, t__ for
multiplication, t,_for division, andt _for the remainder

Science Diliman (July-December 2007) 19:2, 12-22

e

e

e

e

e

An Asynchronous |EEE Floating-Point Arithmetic Unit

.f'fl — d —= r."r:'].
O LS dgid1
it |: o2
—= il
do | ¢
~— e— did?2
atd
| Bt =24 =—v -
| xor 7
B f =2 =— — q e il
9 Le g
e Pt=21>— |-
| xor [~ 7
.Ir}ir = 24 = —+ — q = o7
Q
-+ be— 2 dlT
Al L
do 2 2 2 3
nertlf = —t —t o s .
dol 1 oor - Fgexmey doT -
K - -
dol —- rh‘?’ . da7 —-
D] OF s '”J}'}}@" didl 11—
il —» or Lewp dol2 -
do2 = or L pgEpior dol2 —I
" r'_|r'_ —q"c r.ll.irlll:z

i m BaY a3 .

Figure 10. Implementation of sample algorithm

Science Diliman (July-December 2007) 19:2, 12-22

.f.l'.-:-lléﬂ:

17

Noche and Araneta

operation. The completion times of special cases are
around 8to 9 ns.

For addition, the next step, the determination of the
larger operand, takes atime t_. Adjusting the
significand so that the exponentsare equal takesatime
dependent on the exponent difference: xt_, wherex =
le - | Thelast stepstake atimet, whichissmall if
the result is zero, and large if the result is negative.
But itseffect on the completiontimeisnegligiblewhen
compared with the effect of the exponent difference.
Thus, t,, can be approximated as a constant equal toits
average value.

For multiplication, the next stepisasignificand addition
for every bit in the first operand's significand that isa
1. Thissteptakesatimen,t ., wheren, isthe number
of I'sinF,. Thereisalso afixed timetaken for shifting
the significands, t . The last steps take a variable
timet , depending ontheresult. But sinceit haslittle
effect on the completion time, it can be treated as a
constant.

For division, the next step isto normalize the operands
if they are denormal. Thistakesatime st , wheresis
the number of shiftsto normalize the operands. There
isthen afixed loop, where aregister write occurswhen
thetemporary significand of thefirst operandisgreater
than or equal to the second operand'ssignificand. This
conditionisnoted by a1 in the unrounded significand
of theresult F,'. Thistakesatimen,t,, wheren, is
thenumber of 1'sinF,'. Shifting the significandstakes
afixedtimet, . Thelast stepstakeavariabletimet,
depending on the result. Its effect on the completion
time is small, and it can be treated as a constant to

simplify matters.

For the remainder operation, the next step, normalizing
the operands if they are denormal, takes a time <t .
The remaining steps are more complicated, with many
conditional branches. Whene, <e,, thecalculationis
guick and this can be treated as a special case. When
e > e, the algorithm may go through a loop that
executes a shift up to e -€ times. However, if the
significands are multiples of each other, this loop is
exited. One easy way to quantify 'being multiples of
each other' is to use the differencer, - r,, wherer, is
the number of bitsfrom the most significant 1 bit of F,

18

to the least significant 1 bit of F, and r,, is defined
similarly for F,. If each iteration in the loop takes a
timetrsb, this step cannot take longer than (e, -e)) t
but cantakeashorter timeifr -r <e -e,. Thus,this
step takesatime zt , where zis either .- or r, - r,,
whichever isthe smaller positive number. Whene, =
e,, thecompletiontimeist and depends highly onthe
significands. Theeffect of t isnot negligible, but may
be ignored for simplicity. Note that operands having
e, > e, also pass through the circuitry for e, = e,.

Table 1 shows that the completion times are mostly
functions of the number of shiftsor of additions. Using
improved adders or shifters will greatly shorten the
completiontimes.

Experimental Results

op detailed approximate
+ tun + tas + tad + Xtaa + taI aax + ba
X t +t +nt +t +t an +b
un ms X mad mss ml m X m
- tun + tds + Stn + nthsb + tdss + tdl adnz + bd + C’dS
rem ta Tttt +zt +t az+b +cs
Table 1

Expressions for completion times

There are 2% different single-precision floating-point
values. Thusthere are 2% x 2%2 = 1.8 x 10" different
possible test vectors for each operation. Due to time
constraints, only 248 test vectorswere simulated. The
simulated temperature was 25 °C and each output was
connected to a5 fF capacitiveload. These aretypical
simulation conditions; higher temperatures and larger
loads would lengthen the completion times. The test
inputswere al active and valid from the start. A reset
pulse was applied to reset all flags, and then the
arithmetic control signal was set high. Once aout went
high, the test circuit set the arithmetic control signal
low, causing aout to go low. The time from when the
arithmetic control signal went high to when aout went
low isthe completion timerecorded for thetest vector.
The selection of test vectors and the results of the
simulations arein Noche (2003).

Figure 11 shows the completion time t (in ns) for

ordinary case addition asafunction of |e, - e |. Figure
12 showst for ordinary case multiplication asafunction

Science Diliman (July-December 2007) 19:2, 12-22

of the number of 1'sin the first operand's significand.
Figure 13 shows t for ordinary case division (no
denormal operands) as afunction of the number of 1's
in the result's unrounded significand (including the
guard, round, and sticky bhits). Figure 14 showst for
ordinary case division as a function of the number of
shifts needed to normalize both operands (the test
vectors here all haveone 1inF,'). Figure 15 showst
for ordinary case remainder (no denormal operands,
e = e,) as afunction of z (defined in the previous
section). Figure 16 showst for ordinary caseremainder
as a function of the number of shifts needed to
normalize both operands (if denormal) (thetest vectors
here al have X = Y so that z=0). The least squares
lineis shown for each graph.

Estimation of Completion Times

3000 3 % =
2500 ———————————————————— —————————— —————————
zoooé
1500 -
1000 -

500 o

0 20 40 60 80 100 120 140

Figure 11. Addition completion times (ordinary cases) in ns
as afunction of |[eX - eY|

650 -
600 fff e
550 fffffffffffffffffffffffffffffffff : fffffffffffff
500
450 ; fffffff 9;,:44": 777777777777777777777777777777777777777
400 —————————— ——

3501 6°

07 S —
0 5 10 15 20 25

Figure 12. Multiplication completion times (ordinary cases)
in ns as a function of the number of 1'sin FX

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous |EEE Floating-Point Arithmetic Unit

850

800

750

700

\‘b
(¢

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

650

600

TR B A R B A B AR
d\

2

550

500wwww\wwww\wwww\wwwwiwwww
0 5 10 15 20 25

Figure 13. Division completion times (ordinary cases, without
denormal operands) in ns as a function of the number of 1's
inFz’

1200 -
1100
1000

900 -
800 ffffffffff ff

700 1

600 -

500 ?

0 10 20 30 40 50

Figure 14. Division completion times (ordinary cases, with
one 1in FZ') in ns as a function of the number of shifts to
normalize operands

700 -
600 —— O
500
400 Jrrmmoeee , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

300 E""""’"""""""’/::”":: ’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

200 E’"""’""’::’O{ ’’

Figure 15. Remainder completion times (ordinary cases, w/
0 denormal operands, eX >= €Y) in ns as a function of z

19

Noche and Araneta

1200 -
800 -
600 -
400

200

0 10 20 30

40 50

Figure 16. Remainder completion times (X = Y) in ns as a
function of the number of shifts to normalize operands

Table 2 showsthe predicted completion timest and the
standard error inthe predicted t based on the simulation
results. For single precision, the absolute value of the
exponent difference ranges from x = 0 to 254. The
approximate range for addition completiontimeswould
thus be from 59.0 ns to 5850.2 ns. Cases where x is
large are quite rare. In Oberman (1996), ten
applications from the SPECfp92 benchmark suite
yielded thefollowing distribution for double-precision
addition and subtraction operations: around 23% of them
had x = 0 and around 20% had x = 1; 52% of the
operations had x < 3 and around two-thirds had x < 6.
Using thisdistribution, the average addition completion
time would be around 127.4 ns.

op t (ns) standard error
+ 22.8x+59.0 5.0
X 11.5n, +342.5 101
+ 11.8n,+542.2+12.8s 53

rem 26.4z+70.6 +20.4s 42.1

Table 2
Predicted completion times

The number of 1's in a single-precision significand
ranges from n, = 0 to 24. Multiplication completion
times might thus range from 342.5 nsto 618.5 ns. For
division, n, can vary from 1 to 26, while s can vary
from 0 to 44, resulting in an estimated range of 554.0

20

ns(nZ=1,s=0)t01107.0ns(n, =24, s=22) for the
completion times. For the remainder operation, 0 < z
< 23 and 0 < s< 44, leading to abest-case estimate of
70.6 ns (z = 0, s = 0), and a worst-case estimate of
1126.6 ns (z = 23, s = 22) for the completion times.
Note that the predicted remainder completion time has
arelatively large standard error.

While these variable latency algorithms can result in
very long completion times, in other cases the times
are much shorter. For example, operations with zero
operands finish very quickly inthiswork. Thiscould
proveuseful in someapplications. For example, taking
advantage of the relative occurrence of zero-valued
discrete cosine transform coefficients in compressed
video led to fewer operations and reduced power
consumptionin (Xanthopoulos& Chandrakasan, 1999).

Power and Energy Consumption

The power and energy consumptions of thiswork for
afew test cases are shown in Table 3.

Test vector (ns) (mW) (nJ)

4195835 + 3145727 79.0 4.08 0.32

4195835 x 3145727 465.1 4.07 1.89

4195835 + 3145727 703.1 3.87 2.72

4195835 rem 3145727 101.5 4.19 0.43
Table 3

Completion times, power consumption, and energy
consumption of a few test cases

CONCLUSIONS

An asynchronous single-precision floating-point
arithmetic unit is designed and tested at the transi stor
level using Cadence software. Building blocks well-
suited for four-phase handshaking and dual-rail data
are used to implement the algorithms. A serial
architecture is chosen to keep the design small: only
17,085 transistors are used. Provision for arounding
unit is included, which enables the unit to follow the
IEEE 754-1985 Standard for Binary Floating-Point
Arithmetic. Due to limited time and resources, the

Science Diliman (July-December 2007) 19:2, 12-22

transistor-level design of the rounding unit is left for
future work.

Previouswork on asynchronousfloating-point arithmetic
units have mostly focused on single operations such as
divison. Thisisthefirst work to theauthors knowledge
that can perform floating-point addition, multiplication,
division, and remainder using acommon datapath. The
algorithms used in thiswork are designed to minimize
area (and possibly cost) requirements. While current
designs focus on improving speed, the recent trend
toward mobile devices might make area-efficient
designs more attractive.

ACKNOWLEDGMENTS

This study was granted financial support by the Office
of the Vice Chancellor for Research and Devel opment-
University of the Philippines, Diliman under Grant No.
00010.1 NSET. LouisAlarcon and AnastaciaBallesil
provided useful information during therevision of this
manuscript. J.R.N. thanks the family of J.C.A. for
their support, and the anonymous referees for their
suggestions.

REFERENCES

Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev, 1997. Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers. |EICE Transactions on Information and Systems
E80-D(3): 315-325.

Grehan, R., 1988. Floating-point without acoprocessor. BYTE
13(9): 313-319.

Hauck, S., 1995. Asynchronous design methodologies: An
overview. Proceedings of the |[EEE 83(1): 69-93.

|EEE Standard for Binary Floating-Point Arithmetic, 1985.
New York: ANSI/IEEE Std. 754-1985.

Kessels, J. and P. Marston, 1999. Designing asynchronous

standby circuits for alow-power pager. Proceedings of the
IEEE 87(2): 257-267.

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous |EEE Floating-Point Arithmetic Unit

Kishinevsky, M., A. Kondratyev, A. Taubin, and V.
Varshavsky, 1994. Concurrent Hardware: The Theory and
Practice of Self-timed Design. Chichester, John Wiley & Sons:
368 pp.

Kondratyev, A., J. Cortadella, M. Kishinevsky, L. Lavagno,
andA. Taubin, 1998. The use of Petri netsfor thedesign and
verification of asynchronous circuits and systems. Journal
of Circuits, Systems, and Computers 8(1): 67-118.

Martin,A., 1990. ProgramminginVVLSI: Fromcommunicating
processes to delay-insensitive circuits. In Hoare C. (ed.)
Developments in Concurrency and Communication.
Addison-Wesley, UT Year of Programming Series. 1-64.

Matsubara, G. and N. Ide, 1997. A low power zero-overhead
self-timed division and square root unit combining asingle-
rail static circuit with a dual-rail dynamic circuit. In
Proceedings of the Third International Symposium on
Advanced Research in Asynchronous Circuitsand Systems,
Eindhoven, The Netherlands: 198-209.

Nielsen, L. and J. Sparsg, 1999. Designing asynchronous
circuitsfor low power: AnlIFIRfilter bank for adigital hearing
aid. Proceedingsof the IEEE 87(2): 268-281.

Noche, J., 2003. An asynchronous single-precision floating-
point arithmetic unit. M.S. thesis, University of the
Philippinesat Diliman.

Oberman, S., 1996. Design issues in high performance
floating point arithmetic units. Technical Report CSL-TR-
96-711, Computer Systems Laboratory, Departments of
Electrical Engineering and Computer Science, Stanford
University, Stanford, California.

Ruiz, G, 1998. Evaluation of three 32-bit CMOS addersin
DCVSlogic for self-timed circuits. IEEE Journal of Solid-
Sate Circuits 33(4): 604-613.

Ruiz, G, 2000. Addition to "Eva uation of three 32-bit CMOS
addersin DCV Slogic for self-timed circuits'. |EEE Journal
of Solid-Sate Circuits 35(10): 1517.

Shams, M., J. Ebergen, and M. EImasry, 1998. Modeling and
comparing CMOS implementations of the C-element. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems 6(4): 563-567.

21

Noche and Araneta

Sutherland, 1. and J. Ebergen, 2002. Computers without
clocks. Scientific American 287(8): 46-53

vanBerkd, C., M. Josephs, and S. Nowick, 1999. Applications
of asynchronous circuits. Proceedings of the IEEE 87(2):
223-233,

Williams, T. and M. Horowitz, 1991. A zero-overhead self-
timed 160-ns 54-b CMOS divider. |IEEE Journal of Solid-
SateCircuits26(11): 1651-1661.

Won, J-H. and K. Choi, 2000. L ow power self-timed floating-
point divider in 0.25um technology. In Proceedings of the
26th European Solid-Sate Circuits Conference, Stockholm,
Sweden.

Xanthopoulos, T. and A. Chandrakasan, 1999. A |ow-power
IDCT macrocell for MPEG-2 MP@ML exploiting data
distribution propertiesfor minimal activity. |EEE Journal of
Solid-Sate Circuits 34(5): 693-703.

22

Science Diliman (July-December 2007) 19:2, 12-22

