The Jordan Canonical Form of a Product of Elementary S-unitary Matrices

Erwin J. Gonda
Agnes T. Paras*

Institute of Mathematics and
Natural Sciences Research Institute
University of the Philippines Diliman

ABSTRACT

Let S be an n-by-n, nonsingular, and Hermitian matrix. A square complex matrix Q is said to be S-unitary if $Q^*SQ = S$. An S-unitary matrix Q is said to be elementary if rank$(Q - I) = 1$. It is known what form every elementary S-unitary can take, and that every S-unitary can be written as a product of elementary S-unitaries. In this paper, we determine the Jordan canonical form of a product of two elementary S-unitaries.

Keywords: elementary S-unitary matrix, Hermitian matrix, Jordan canonical form

INTRODUCTION

Let M_n be the set of all n-by-n matrices with entries in the complex field \mathbb{C} and let GL_n be the set of all nonsingular matrices in M_n. Let $S \in GL_n$ be Hermitian. A $Q \in M_n$ is said to be S-unitary if $Q^*SQ = S$, where Q^* is the conjugate transpose of Q (Gohberg et al. 2005). If $S = I$, then the set of S-unitary matrices in GL_n coincides with the set of unitary matrices. Let U_S be the set of all S-unitary matrices. Observe that U_S is nonempty since $I \in U_S$. If $Q \in U_S$, then Q^{-1} is similar to Q^*, $|\det Q| = 1$, and $\alpha Q \in U_S$ for all $\alpha \in \mathbb{C}$ with modulus 1. Moreover, U_S is a group under multiplication and consists of all matrices in M_n that preserve the scalar product $[u,v]_S = u^*Sv$ for all $u, v \in \mathbb{C}^n$.

An $H \in U_S$ is called elementary if rank$(H - I) = 1$. Let H_S be the set of all elementary S-unitary matrices. When S is Hermitian, $H_S = K_S \cup L_S$, where

$$K_S = \{K_{x,r} = I + ixx^*S : x \in \mathbb{C}^n \setminus \{0\}, x^*Sx = 0, \text{ and } r \in \mathbb{R} \setminus \{0\}\}$$

and

$$L_S = \{L_{x,\phi} = I + \frac{(e^{i\phi} - 1)}{x^*Sx}xx^*S : x \in \mathbb{C}^n, x^*Sx \neq 0, \phi \in \mathbb{R}, \text{ and } e^{i\phi} \neq 1\}$$

* Corresponding Author
The Jordan Canonical Form of a Product of Elementary S-unitary Matrices

(Catbagan 2015). If \(v \in \mathbb{C}^n \) such that \(v^*Sv \neq 0 \), the \(\Lambda_x \)-Householder matrix \(Sv = I - \frac{2}{v^*v}vv^*S \) generalizes the Householder matrix of \(v \), which is equal to \(L_{v,v} \) for \(S = I \) (Merino et al. 2011; Horn and Johnson 2013). If \(K_{x_1} \in K_n \), then \(K_{x_1}^{-1} = K_{x_1} \) and \(K_{x_1} \) is similar to \(I_{n-2} \oplus J_2 \) (1). If \(L_{x_1} \in L_n \), then \(L_{x_1}^{-1} = L_{x_1} \), and \(L_{x_1} \) is similar to \(I_{n-1} \oplus [e^{i\varphi}] \). Hence \(H \in H_n \) if and only if \(H^{-1} \in H_n \). Thus, \(I \) is a product of two elements of \(H_n \). Moreover, if \(A \in U_n \), then \(A \) can be written as a product of elements of \(H_n \) (Catbagan 2015). Thus, the elements of \(H_n \) generate the group \(U_n \). Since there are two types of elements of \(H_n \), there are three types of products of two elements of \(H_n \) up to similarity. We wish to determine which Jordan canonical forms arise for each possibility, since the Jordan canonical form of a matrix reveals a lot of information such as its rank, nullity, eigenvalues, and their algebraic and geometric multiplicities. Analogous results for symplectic matrices and \(J \)-Householder matrices can be found in de la Rosa et al. (2012).

PRELIMINARIES

If \(S = P^*P \) for some \(P \in GL_n \), then \(x^*Sx > 0 \), when \(0 \neq x \in \mathbb{C}^n \); and \(Q \in U_n \) if and only if \(PQP^{-1} \in U_n \). Hence when \(S \) is positive definite, \(H_n = L_n \), and every \(S \)-unitary is similar to a unitary matrix. Since \(U_n = U_{2n} \), from now on we only consider \(S \) that is \(* \)-congruent to \(I_n \oplus -I_{n-k} \) for \(0 < k < n \), that is \(S = P^* (I_n \oplus -I_{n-k}) P \), for some \(P \in GL_{2n} \).

Let \(n \) be a positive integer such that \(n \geq 2 \), and \(T \subseteq \mathbb{C}^n \) be nonempty. Let \(T^S \) be the \(S \)-perpendicular subspace of \(T \) defined by

\[
T^S = \{ z \in \mathbb{C}^n \mid x^*Sz = 0, \text{ for all } x \in T \}.
\]

Then \(\dim T^S = n - \dim(\text{span} T) \), since \(T^S = (S(\text{span} T))^\perp \), which is the orthogonal complement of \(S(\text{span} T) \) with respect to the usual inner product on \(\mathbb{C}^n \), and \(\mathbb{C}^n = W \oplus W^\perp \) for any subspace \(W \) of \(\mathbb{C}^n \). Let \(H_x, H_y \in H_n \) and \(A = H_x H_y \). Then \(H_x = I + \alpha xx^*S \) and \(H_y = I + \beta yy^*S \), for some nonzero \(\alpha, \beta \in \mathbb{C} \). If \(\{x, y\} \) is linearly dependent, then \(y = \delta x \), for some \(\delta \in \mathbb{C} \). This implies

\[
A = I + \alpha xx^*S + \beta yy^*S + \alpha \beta xx^*Syy^*S = I + (\alpha + \beta |\delta|^2 + \alpha \beta |\delta|^2) xx^*S.
\]

Hence \(A = I + \mu xx^*S \), where \(\mu = \alpha + \beta |\delta|^2 + \alpha \beta |\delta|^2 \). If \(\mu = 0 \), then \(A = I \), which implies \(H_x = H_y^{-1} \). If \(\mu \neq 0 \), then \(\text{rank}(A - I) = 1 \), and since \(A \in U_n \), we have \(A \in H_n \).
Suppose \(\{x, y\} \) is linearly independent. Let \(z \in \mathbb{C}^n \) be given. Suppose \(z \in \ker(A - I) \), that is, \(Az = z \). Then

\[
0 = (A - I)z = (\alpha x^*Sz)x + (\beta y^*Sz)y + \alpha\beta(x^*Sy)(y^*Sz)x.
\]

Since \(\{x, y\} \) is linearly independent, and \(\alpha, \beta \) are nonzero, we have \(y^*Sz = 0 \) and it follows that \(x^*Sz = 0 \). Conversely, suppose \(z \in \{x, y\}^5 \). Then \(x^*Sz = y^*Sz = 0 \) and so

\[
(A - I)z = \alpha(x^*Sz)x + \beta(y^*Sz)y + \alpha\beta(x^*Sy)(y^*Sz)x = 0,
\]

that is, \(z \in \ker(A - I) \). Therefore \(\ker(A - I) = \{x, y\}^5 \).

Lemma 1. Let \(S \in \text{GL}_n \) be Hermitian and let \(x, y \in \mathbb{C}^n \) be nonzero. Suppose \(H_x, H_y \in H_S \) and \(A = H_x H_y \). If \(\{x, y\} \) is linearly dependent, then \(A = I \) or \(A \in H_S \). If \(\{x, y\} \) is linearly independent, then \(\ker(A - I) = \{x, y\}^5 \).

If \(\{x, y\} \) is linearly independent, an immediate consequence of Lemma 1 is that \(\dim(\ker(A - I)) = \dim(\{x, y\}^5) = n - 2 \). Thus, there are \(n - 2 \) Jordan blocks corresponding to 1 in the Jordan canonical form of \(A \).

For completeness, we include the following lemma, which is used several times in the paper and can be readily verified. If \(A = [a_{ij}] \in M_n \), the **trace of \(A \)** is defined to be \(\text{tr}A = \Sigma_{j=1}^n a_{jj} \).

Lemma 2. Let \(A, B \in M_2 \) be given such that neither is a scalar matrix. Then \(A \) and \(B \) are similar if and only if \(\text{tr}A = \text{tr}B \) and \(\det A = \det B \).

Let \(\{x, y\} \) be a linearly independent subset of \(\mathbb{C}^n \). We consider each of the three possibilities (i) \(H_x, H_y \in K_S \) (ii) \(H_x, H_y \in L_S \) or (iii) \(H_x \in K_S \) and \(H_y \in L_S \) and determine the Jordan canonical form of the product \(H_x H_y \).

\(H_x, H_y \in K_S \)

Let \(\{x, y\} \) be a linearly independent subset of \(\mathbb{C}^n \) such that \(H_x, H_y \in K_S \), i.e., \(H_x = I + ir_x xx^*S \) and \(H_y = I + ir_y yy^*S \), where \(x^*Sx = y^*Sy = 0 \), and \(r_x, r_y \) are nonzero real numbers. If \(A = H_x H_y \), then

\[
A = I + ir_x xx^*S + ir_y yy^*S - r_x r_y (x^*Sy)xy^*S.
\]

Either \(x^*Sy = 0 \) or \(x^*Sy \neq 0 \).
Case 1: If \(x^*S y = 0 \), then \(A = I + i \tilde{r} x x^* S + i \tilde{r} y y^* S \). Note that \(\{x, y\}^S = \{x\}^S \cap \{y\}^S \), which is of dimension \(n - 2 \). If \(n > 2 \), then there exists \(z \in \{y\}^S \) but \(z \notin \{x\}^S \). Hence, \((A - I)z = i \tilde{r} (x^*Sz)x \neq 0 \). Since \(x^*Sx = y^*Sy = x^*Sy = 0 \), we have \((A - I)^2 \neq 0 \). Since \(A - I \neq 0 \), the minimal polynomial of \(A \) is \(x - 1 \) and so the largest Jordan block corresponding to 1 is of size 2. The number of Jordan blocks corresponding to 1 of size 1 is \(\text{rank}(A - I)^0 - 2 \text{rank}(A - I) + \text{rank}(A - I)^2 = n - 2(2) + 0 = n - 4 \). Since 1 is the only eigenvalue of \(A \) and there are \(n - 2 \) Jordan blocks corresponding to 1, \(A \) is similar to \(I_{n-2} \oplus J_2 (1) \oplus J_2 (1) \). If \(n = 2 \), then \(x^*S y \neq 0 \), otherwise \(x^*Sx = y^*Sy = x^*Sy = 0 \) and \(\{x, y\} \) linearly independent imply \(C^2 = \{x, y\}^S \) is of dimension \(n - 2 = 0 \), which is a contradiction.

Case 2: Suppose \(x^*S y \neq 0 \). We find any remaining eigenvalues of \(A \). The images of \(x \) and \(y \) under \(A \) are

\[
Ax = x + i \tilde{r}_x (x^*Sx)x + i \tilde{r}_y (y^*Sx)y - r_x r_y (x^*Sy)(y^*Sx)x = (1 - r_x r_y \|x^*Sy\|^2) x + i \tilde{r}_y (y^*Sx)y
\]

and

\[
Ay = y + i \tilde{r}_x (x^*Sy)x + i \tilde{r}_y (y^*Sy)y - r_x r_y (x^*Sy)(y^*Sy)x = y + i \tilde{r}_y (x^*Sy)x.
\]

Hence \(\text{span}\{x, y\} \) is invariant under \(A \). Consider the restriction of \(A \) to \(\text{span}\{x, y\} \) and its matrix representation

\[
M = \begin{bmatrix}
1 - r_x r_y |x^*Sy|^2 & i \tilde{r}_y (x^*Sy) \\
ir_y (y^*Sy) & 1
\end{bmatrix}
\]

with respect to the ordered basis \(\{x, y\} \). Since \(x^*Sx = y^*Sy = 0 \) and \(x^*Sy \neq 0 \), we have \(C^2 = \text{span}\{x, y\} \oplus \{x, y\}^S \). Thus \(A \) is similar to \(M \oplus I_{n-2} \) and 1 is not an eigenvalue of \(M \). Note that \(\det(M) = 1 \) and \(\text{tr}(M) = 2 - r_x r_y \|x^*Sy\|^2 \in \mathbb{R} \). Since \(A \in U_2 \) has determinant 1 and \(M \) is not a scalar matrix, we see that \(M \) is similar to one of the following: \(\text{diag}(e^{i\theta}, e^{-i\theta}) \), where \(\theta \in \mathbb{R} \) such that \(e^{i\theta} \neq \pm 1 \); \(J_2 (-1) \); or \(\text{diag}(\lambda, \lambda^{-1}) \), where \(\lambda \in \mathbb{R} \) and \(|\lambda| > 1 \). We determine if the preceding three possibilities for the Jordan canonical form of \(M \) occur.

Let \(\theta \in \mathbb{R} \) such that \(e^{i\theta} \neq \pm 1 \). If we choose \(r_x, r_y \in \mathbb{R} \) such that \(r_x r_y = \frac{2(1 - \cos \theta)}{|x^*Sy|^2} \neq 0 \), then \(\det(M) = 1 = \det(\text{diag}(e^{i\theta}, e^{-i\theta})) \) and \(\text{tr}(M) = 2 \cos \theta = \text{tr}(\text{diag}(e^{i\theta}, e^{-i\theta})) \). By Lemma 2, \(M \) is similar to \(\text{diag}(e^{i\theta}, e^{-i\theta}) \).
If we choose \(r_x, r_y \in \mathbb{R} \) such that \(r_x r_y = \frac{4}{|x^*Sy|^2} \), then \(\text{tr}(M) = -2 = \text{tr}(J_2 (-1)) \) and \(\det(M) = 1 = \det (J_2 (-1)) \). By Lemma 2, \(M \) is similar to \(J_2 (-1) \).

Let \(\lambda \in \mathbb{R} \) such that \(|\lambda| > 1\). If we choose \(r_x, r_y \in \mathbb{R} \) such that \(r_x r_y = \frac{(2 - \lambda - \lambda^{-1})}{|x^*Sy|^2} \neq 0\), then we have \(\det(M) = 1 = \det (\text{diag} (\lambda, \lambda^{-1})) \) and \(\text{tr}(M) = -2 = \text{tr}(\text{diag} (\lambda, \lambda^{-1})) \). Since \(\lambda \neq \lambda^{-1} \), we have that \(M \) is similar to \(\text{diag} (\lambda, \lambda^{-1}) \).

Theorem 3. Let \(S \in \text{GL}_n \) be indefinite Hermitian and \(x, y \in \mathbb{C}^n \) be given. If \(\{x, y\} \) is linearly independent and \(H_x, H_y \in \mathcal{K}_S \), then the product \(H_x H_y \) is similar to one of the following:

a. \(I_{n-4} \oplus J_2 (1) \oplus J_2 (1) \)

b. \(I_{n-2} \oplus J_2 (-1) \)

c. \(I_{n-2} \oplus \text{diag}(e^{i\theta}, e^{-i\theta}), \text{where } \theta \in \mathbb{R} \text{ such that } e^{i\theta} \neq \pm 1 \)

d. \(I_{n-2} \oplus \text{diag}(\lambda, \lambda^{-1}), \text{where } |\lambda| > 1 \text{ and } \lambda \in \mathbb{R} \).

\(H_x, H_y \in \mathcal{L}_S \)

We now consider the product of two elements of \(\mathcal{L}_S \). Let \(x, y \in \mathbb{C}^n \) such that \(\{x, y\} \) is linearly independent and \(H_x, H_y \in \mathcal{L}_S \), that is, \(H_x = I + \frac{e^{i\alpha} - 1}{x^*Sx} xx^*S \) and \(H_y = I + \frac{e^{i\beta} - 1}{y^*Sy} yy^*S \), where \(x^*Sx \) and \(y^*Sy \) are nonzero, and \(\alpha, \beta \in \mathbb{R} \) such that \(e^{i\alpha} \neq 1 \) and \(e^{i\beta} \neq 1 \). Since \(H_y = H_y \) for all nonzero \(a \in \mathbb{C} \), we can assume that \(x^*Sx, y^*Sy \in \{1, -1\} \). If \(A = H_x H_y \) then

\[
A = I + \frac{e^{i\alpha} - 1}{x^*Sx} xx^*S + \frac{e^{i\beta} - 1}{y^*Sy} yy^*S + \frac{e^{i\alpha} - 1}{x^*Sx} \frac{e^{i\beta} - 1}{y^*Sy} (x^*Sy)xy^*S.
\]

Case 1: If \(x^*Sy = 0 \), then \(A = I + \frac{e^{i\alpha} - 1}{x^*Sx} xx^*S + \frac{e^{i\beta} - 1}{y^*Sy} yy^*S \). Observe that \(Ax = x + (e^{i\alpha} - 1)x = e^{i\alpha}x \). Hence, \(x \) is an eigenvector of \(A \) corresponding to \(e^{i\alpha} \). Similarly, \(y \) is an eigenvector of \(A \) corresponding to \(e^{i\beta} \). Since \(x^*Sx \) and \(y^*Sy \) are nonzero and \(x^*Sy = 0 \), we have \(\mathbb{C}^n = \text{span} \{x, y\} \oplus \{x, y\}^5 \). Hence \(A \) is similar to \(I_{n-2} \oplus \text{diag}(e^{i\alpha}, e^{i\beta}) \).
Case 2: Suppose $x^*Sy \neq 0$. We find any remaining eigenvalues of A. The images of x and y under A are

$$A x = x + (e^{i\alpha} - 1)x + \frac{e^{i\beta} - 1}{y^*Sy} (y^*Sx)y + \frac{e^{i\alpha} - 1}{x^*Sx} \frac{e^{i\beta} - 1}{y^*Sy} (x^*Sy)(y^*Sx)x$$

$$= \left(e^{i\alpha} + \frac{e^{i\alpha} - 1}{x^*Sx} \frac{e^{i\beta} - 1}{y^*Sy} |x^*Sy|^2\right)x + \left(\frac{e^{i\beta} - 1}{y^*Sy} (y^*Sx)y\right)$$

and

$$A y = y + \frac{e^{i\alpha} - 1}{x^*Sx} (x^*Sy)x + \frac{e^{i\beta} - 1}{y^*Sy} (y^*Sx)y + \frac{e^{i\alpha} - 1}{x^*Sx} \frac{e^{i\beta} - 1}{y^*Sy} (x^*Sy)(y^*Sx)x$$

$$= e^{i\beta} y + \left(e^{i\beta} x^*Sy - \frac{e^{i\alpha} - 1}{x^*Sx}\right)x.$$

Hence $\text{span}\{x, y\}$ is invariant under A. Consider the restriction of A to $\text{span}\{x, y\}$ and its matrix representation

$$L = \begin{bmatrix}
 e^{i\alpha} + \frac{e^{i\alpha} - 1}{x^*Sx} \frac{e^{i\beta} - 1}{y^*Sy} |x^*Sy|^2 & e^{i\beta} x^*Sy - \frac{e^{i\alpha} - 1}{x^*Sx} \\
 \frac{e^{i\beta} - 1}{y^*Sy} (y^*Sx) & e^{i\beta}
\end{bmatrix}$$

with respect to the ordered basis $\{x, y\}$.

Note that $a x + b y \in \{x, y\}^5$ for some $a, b \in \mathbb{C}$ if and only if $x^*S(a x + b y) = 0$ and $y^*S(a x + b y) = 0$, that is

$$\begin{bmatrix}
 x^*Sx & x^*Sy \\
 y^*Sx & y^*Sy
\end{bmatrix}\begin{bmatrix}
 a \\
 b
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}.$$ Since $x^*Sx, y^*Sy \in \{1, -1\}$, we have $\{x, y\}^5 \cap \text{span}\{x, y\} = \{0\}$ if and only if x^*Sx and y^*Sy have opposite signs or $|x^*Sy| \neq 1$.

If $x^*Sx = y^*Sy \in \{\pm 1\}$ and $|x^*Sy| = 1$, then $x, y \notin \{x, y\}^5$ and

$\{x, y\}^5 \cap \text{span}\{x, y\} = \text{span}\{(x^*Sy)x - (x^*Sx)y\}$.
Hence \(\text{span}\{x\} \oplus \{x, y\}^s \) is of dimension \(n-1 \) and contains \(\text{span}\{x, y\} \). Now \(Ax \) can be rewritten as \(Ax = e^{(a+i\beta)I}x - (e^{i\beta} - 1)(y^*Sx)[(x^*Sy)x - (x^*Sx)y] \). This implies that \(\text{span}\{x\} \oplus \{x, y\}^s \) is invariant under \(A \). Since \(\det A = e^{i(a+\beta)} \) and \(\text{rank}(A-I) = 2 \), we have that \(A \) is similar to \(l_{n-2} \oplus J_x(1) \oplus [e^{(a+i\beta)}], \) if \(e^{(a+i\beta)} \neq 1 \); or \(l_{n-3} \oplus J_y(1) \), if \(e^{(a+i\beta)} = 1 \).

If \(\mathbb{C}^n = \text{span}\{x, y\} \oplus \{x, y\}^s \), then \(A \) is similar to \(l_{n-2} \oplus L \) and \(L \) is not an eigenvalue of \(L \). Observe that \(\det L = e^{i(a+\beta)} \) and \(\text{tr} L = e^{ia} + e^{i\beta} + \frac{e^{ia} - 1}{x^*Sx}, \frac{e^{i\beta} - 1}{y^*Sy} \) and \(\text{tr} L = |x^*Sy|^2 \).

Since \(A \in U_S \) and \(L \) is not a scalar matrix, then \(L \) is similar to one of the following:

\[\text{diag}(e^{i\beta}, e^{i\phi}), \text{where } \theta, \phi \in \mathbb{R} \text{ such that } e^{i\beta}, e^{i\phi} \text{ are distinct and both are not equal to } 1; \]

\[J_x(\lambda), \text{where } |\lambda| = 1 \text{ but } \lambda \neq 1; \text{ or } \text{diag}(\lambda, \overline{\lambda} - 1), \text{where } |\lambda| > 1. \]

It suffices to determine whether the last two possibilities for the Jordan canonical form of \(L \) occur. But first we need to determine the possible nonzero values of \(x^*Sy, y^*Sy \in \{1, -1\} \) and \(\{x, y\} \) is linearly independent. Let \(e_i \in \mathbb{C}^n \) denote the column with \(i \)th entry 1 and 0 elsewhere. Suppose \(c \in \mathbb{C} \) is nonzero and \(S = P^*(l_{k} \oplus -l_{n-k})P \), for some nonsingular \(P \) and integer \(0 < k < n \). If \(|c| > 1 \), we can take \(x, y \in \mathbb{C}^n \) such that \(Px = e_1 \) and \(Py = ce_1 + \sqrt{|c|^2 - |1e_{k+1}|}, \) so that \(x^*Sx = 1, y^*Sy = |c|^2 - (|c|^2 - 1) = 1, \) and \(x^*Sy = c. \) Thus, if \(|c| > 1 \), there exists a linearly independent set \(\{x, y\} \) such that \(x^*Sx = y^*Sy \) and \(x^*Sy = c. \) If \(c \in \mathbb{C} \) is nonzero and we take \(x, y \in \mathbb{C}^n \) such that \(Px = e_1 \) and \(Py = ce_1 + \sqrt{|c|^2 - |1e_{k+1}|}, \) then \(x^*Sx = 1, y^*Sy = |c|^2 - (|c|^2 + 1) = -1 \) and \(x^*Sy = c. \) Hence every nonzero \(c \in \mathbb{C} \) can be realized as \(x^*Sy \) by a linearly independent set \(\{x, y\} \) such that \(x^*Sx = -y^*Sy \), when \(S \) is \(* \)-congruent to \(l_k \oplus -l_{n-k}. \)

Let \(\alpha = \beta \in \mathbb{R} \) such that \(\alpha \neq k\pi, \) for all \(k \in \mathbb{Z}. \) If \(a = \text{Re}(e^{ia}), \) then \(\frac{-4e^{ia}}{(e^{ia} - 1)^2} = \frac{2}{1-a} > 1. \)

If we take \(x, y \in \mathbb{C}^n \) such that \(x^*Sx = 1 = y^*Sy \) and \(|x^*Sy|^2 = \frac{-4e^{ia}}{(e^{ia} - 1)^2}, \) then \(\text{tr} L = 2e^{ia} + (e^{ia} - 1)2|x^*Sy|^2 = -2e^{ia} \) and \(\text{det} L = e^{2ia}. \) Since \(L \) is not a scalar matrix, it follows from Lemma 2 that \(L \) is similar to \(J_y(-e^{ia}), \) where \(e^{ia} \neq \pm 1. \)

If we take \(e^{ia} = e^{-i\beta} = i, \) and \(x, y \in \mathbb{C}^n \) such that \(x^*Sx = 1 = -y^*Sy \) and \(|x^*Sy| = 1, \) then \(\text{tr} L = -2 \) and \(\text{det} L = 1. \) Since \(L \) is not a scalar matrix, \(L \) is similar to \(J_y(-1). \)

Let \(\lambda = re^{ia}, \) where \(r > 1 \) and \(\theta \neq 2k\pi \) for all \(k \in \mathbb{Z}. \) Then \(\frac{e^{ia}(r - 1)^2}{(e^{ia} - 1)^2r} \) is positive.
If we take $\alpha = \beta = 0$, and $x, y \in \mathbb{C}^n$ such that $x^*Sx = 1 = -y^*Sy$ and $|x^*Sy|^2 = -\frac{e^{\alpha}(r-1)^2}{(e^{\alpha}-1)2r}$, then $\text{tr} \ L = 2e^{\alpha} - (e^{\alpha}-1)^2 |x^*Sy|^2 = e^{\alpha} (r + r^{-1}) = \lambda + \overline{\lambda}^{-1}$ and $\det L = e^{2\alpha} = \lambda \overline{\lambda}^{-1}$. Hence L is similar to diag$(\lambda, \overline{\lambda}^{-1})$.

Let $\lambda = r$, where $r > 1$. Let $\beta = -\alpha$ and $\alpha \in \mathbb{R}$ such that Re$(e^{i\alpha}) = r$. Since $\frac{(r-1)^2}{r} > 0$, we have $\frac{r - r^{-1}}{2(1-r^{-1})} > 1$. If we take $x, y \in \mathbb{C}^n$ such that $x^*Sx = 1 = y^*Sy$ and $|x^*Sy|^2 = \frac{r - r^{-1}}{2(1-r^{-1})}$, then $\text{tr} \ L = 2r^{-1} + 2(1-r^{-1}) |x^*Sy|^2 = r + r^{-1}$ and $\det L = 1$. Hence L is similar to diag(r, r^{-1}).

Theorem 4. Let $S \in GL_n$ be indefinite Hermitian and $x, y \in \mathbb{C}^n$ be given. If $\{x, y\}$ is linearly independent such that $H_x, H_y \in L_S$, then the product $H_x H_y$ is similar to one of the following:

a. $I_{n-3} \oplus \text{diag}(e^{i\theta}, e^{i\phi})$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi} \neq 1$

b. $I_{n-3} \oplus J_2(1)$ $\oplus [e^{i\theta}]$, where $\theta \in \mathbb{R}$ and $e^{i\theta} \neq 1$

c. $I_{n-3} \oplus J_3(1)$

d. $I_{n-2} \oplus J_2(\lambda)$, where $|\lambda| = 1$ and $\lambda \neq 1$

e. $I_{n-2} \oplus \text{diag}(\lambda, \overline{\lambda}^{-1})$, where $|\lambda| > 1$.

$H_x \in K_S$ and $H_y \in L_S$

Lastly, we consider the product of an element of K_S and of L_S. If $x, y \in \mathbb{C}^n$ are nonzero such that $H_x \in K_S$ and $H_y \in L_S$, then $H_x = I + irxx^*S$, where $r \in \mathbb{R} \setminus \{0\}$, and $x^*Sx = 0$, and $H_y = I + \frac{e^{i\alpha} - 1}{y^*Sy} yy^*S$, where $e^{i\alpha} \neq 1$. Note that $\{x, y\}$ is linearly independent since $x^*Sx = 0 \neq y^*Sy$. If $A = H_x H_y$, then

$$A = I + irxx^*S + \frac{e^{i\alpha} - 1}{y^*Sy} yy^*S + ir \frac{e^{i\alpha} - 1}{y^*Sy} (x^*Sy) xy^*S.$$
Observe that \(\text{rank}(A - I) = 2 \) and \(\text{rank}(A - I)^2 = \text{rank}(A - I)^3 = 1 \), which imply that 2 is the size of the largest Jordan block corresponding to 1, and the number of Jordan blocks of size 2 corresponding to 1 is \(\text{rank}(A - I) - 2\text{rank}(A - I)^2 + \text{rank}(A - I)^3 = 2 - 2(1) + 1 = 1 \). Since there are \(n - 2 \) Jordan blocks corresponding to 1 and \(\det A = e^{i\alpha} \), we have that \(A \) is similar to \(I_{n-3} \oplus J_2(I) \oplus [e^{i\alpha}] \).

Case 2: Suppose \(x^*Sy \neq 0 \). The images of \(x \) and \(y \) under \(A \) are

\[
Ax = x + \frac{e^{i\alpha} - 1}{y^*Sy}(y^*Sx)y + ir\frac{e^{i\alpha} - 1}{y^*Sy}|x^*Sy|^2x
\]

\[
= \left(1 + ir\frac{e^{i\alpha} - 1}{y^*Sy}|x^*Sy|^2\right)x + \frac{e^{i\alpha} - 1}{y^*Sy}(y^*Sx)y
\]

and

\[
Ay = y + ir(x^*Sy)x + (e^{i\alpha} - 1)y + ir(e^{i\alpha} - 1)(x^*Sy)x = ire^{i\alpha}(x^*Sy)x + e^{i\alpha}y.
\]

Hence \(\text{span}\{x, y\} \) is invariant under \(A \). Consider the restriction of \(A \) to \(\text{span}\{x, y\} \) and its matrix representation

\[
K = \begin{bmatrix}
1 + ir\frac{e^{i\alpha} - 1}{y^*Sy}|x^*Sy|^2 & ire^{i\alpha}(x^*Sy) \\
\frac{e^{i\alpha} - 1}{y^*Sy}(y^*Sx) & e^{i\alpha}
\end{bmatrix}
\]

with respect to the ordered basis \(\{x, y\} \). Since \(\mathbb{C}^n = \text{span}\{x, y\} \oplus \{x, y\}^\perp \), \(A \) is similar to \(I_{n-2} \oplus K \) and 1 is not an eigenvalue of \(K \). Note that \(\det K = e^{i\alpha} \neq 1 \) and \(\text{tr} K = e^{i\alpha} + 1 + ir\frac{e^{i\alpha} - 1}{y^*Sy}|x^*Sy|^2 \). Since \(A \) is \(S \)-unitary, \(K \) is similar to one of the following:

- \(\text{diag}(e^{i\theta}, e^{i\phi}) \), where \(\theta, \phi \in \mathbb{R} \) such that \(e^{i\theta}, e^{i\phi} \) are distinct with both not equal to 1, and \(e^{i(\theta + \phi)} = e^{i\alpha} \); or
- \(\text{diag}(\lambda, \lambda^{-1}) \), where \(|\lambda| > 1 \) and \(\lambda \neq \pm 1 \).

We now determine whether the three possibilities for the Jordan canonical form of \(K \) occur.
Let $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi},$ and $e^{i(\theta + \phi)}$ are not equal to 1, and $e^{i\theta} \neq e^{i\phi}$. If $\alpha = \theta + \phi$, choose $r \in \mathbb{R}$ such that $r(e^{i\alpha} - 1) = \frac{(y^*Sy)(1-e^{i\alpha})(e^{i\phi}-1)}{i|x^*Sy|^2}$. This has a solution since $\frac{(1-e^{i\alpha})(e^{i\phi}-1)}{e^{i\alpha}-1} = -1 + \frac{e^{i\phi}+e^{i\alpha}-2}{e^{i\alpha}-1}$ is nonzero and the real part of $\frac{e^{i\phi}+e^{i\alpha}-2}{e^{i\alpha}-1}$ is 1. Then $\det K = e^{i(\theta + \phi)} = \det(\text{diag}(e^{i\theta}, e^{i\phi}))$ and $\text{tr} K = e^{i\theta} + e^{i\phi} = \text{tr}(\text{diag}(e^{i\theta}, e^{i\phi}))$. Thus K is similar to $\text{diag}(e^{i\theta}, e^{i\phi})$.

Let $\lambda = te^{i\gamma}$, where $t, \gamma \in \mathbb{R}$ such that $t > 1$ and $e^{i\gamma} \neq 1$. Choose $\alpha = 2\gamma$ and $r \in \mathbb{R}$ such that $r(e^{i\alpha} - 1) = \frac{(y^*Sy)(1-te^{i\gamma})(t^{-1}e^{i\gamma}-1)}{i|x^*Sy|^2}$. This has a solution since $\frac{(1-te^{i\gamma})(t^{-1}e^{i\gamma}-1)}{e^{i\alpha}-1} = -1 + \frac{(t+t^{-1})e^{i\gamma}-2}{te^{i\gamma}-1}$ is nonzero and the real part of $\frac{(t+t^{-1})e^{i\gamma}-2}{te^{i\gamma}-1}$ is 1. Then $\det K = \lambda \overline{\lambda}^{-1} = \det(\text{diag}(\lambda, \overline{\lambda}^{-1}))$ and $\text{tr} K = (t + t^{-1}) e^{i\gamma} = \text{tr} (\text{diag}(\lambda, \overline{\lambda}^{-1}))$. By Lemma 2, K is similar to $\text{diag}(\lambda, \overline{\lambda}^{-1})$.

Let $\lambda = e^{i\beta}$, where $\beta \in \mathbb{R}$ and $\lambda \neq \pm 1$. Choose $\alpha = 2\beta$ and $r \in \mathbb{R}$ such that $r = \frac{(1-\lambda)y^*Sy}{i(\lambda + 1)|x^*Sy|^2}$. This has a solution since $\frac{1-\lambda}{\lambda + 1} = -1 + \frac{2}{\lambda + 1}$ and the real part of $\frac{2}{\lambda + 1}$ is 1. Then $\det K = \lambda^2 = \det J_2(\lambda)$ and $\text{tr} K = 2\lambda = \text{tr} J_2(\lambda)$. Since K is not a scalar matrix, K is similar to $J_2(\lambda)$.

Theorem 5. Let $S \in GL_n$ be indefinite Hermitian and $x, y \in \mathbb{C}^n$ be given. If $\{x, y\}$ is linearly independent such that $H_x \in K_z$ and $H_y \in L_z$, then the product $H_x H_y$ is similar to one of the following:

a. $I_{n-3} \oplus J_2(1) \oplus [e^{i\alpha}]$, for some $\alpha \in \mathbb{R}$ such that $e^{i\alpha} \neq 1$

b. $I_{n-2} \oplus \text{diag}(e^{i\theta}, e^{i\phi})$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi}, e^{i(\theta + \phi)}$ are all not equal to 1, and $e^{i\theta} \neq e^{i\phi}$

c. $I_{n-2} \oplus \text{diag}(\lambda, \overline{\lambda}^{-1})$, where $|\lambda| > 1$ and $\lambda \notin \mathbb{R}$

d. $I_{n-2} \oplus J_2(\lambda)$, where $|\lambda| = 1$ but $\lambda \neq \pm 1$.

ACKNOWLEDGMENTS

The work of A.T. Paras was supported by the Natural Sciences Research Institute (NSRI) Project MAT-18-1-05.

REFERENCES

Erwin J. Gonda is a B.S. Mathematics graduate of University of the Philippines Diliman and is currently working in the insurance industry.

Agnes T. Paras <agnes@math.upd.edu.ph> is a professor of Mathematics at University of the Philippines Diliman