Helium Rydberg Atoms in a Strong Magnetic Field: A Classical View on Atomic Physics
Abstract
The hydrogen atom in a strong, uniform magnetic field, is a quantum-mechanical system with chaotic dynamics in the semi-classical limit. Classically irregular motion arises when the spherical Coulomb term in the Hamiltonian becomes of the same order of magnitude as the cylindrical diamagnetic term. For a hydrogen atom in the ground state, a magnetic field of more than 10^5 T is required to create this situation. Rydberg atoms (atoms with a high principal quantum number n>20) allow us to investigate this system at field strength that can be generated in a laboratory setup. The scaling properties of Rydberg atoms in external fields can be used to perform experiments under fixed classical conditions. These scaling transformations show that the dynamics of the system depends on single parameter, the scaled energy ε. In scaled-energy experiments, the field strength is adapted to the laser frequency in order to keep this scaled energy ε = EB^-2/3 constant.
Published
2012-07-03
Issue
Section
Articles
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to the automatic transfer of the copyright to the publisher; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources; and that any costs associated with obtaining this permission are the authors’ responsibility.