Terahertz-Time Domain Spectroscopic (THz-TDS) Measurement of Moderately-Doped Silicon Using InAs Emitter Under Magnetic Field
Abstract
The complex refractive index of silicon using terahertz-time domain spectroscopy (THz-TDS), with an InAs wafer under the influence of a magnetic field as emitter, has been studied. By applying a magnetic field on the InAs emitter, the detected temporal waveform broadens and the spectral weight of its Fourier spectrum shifts toward the low frequency region. Calculating the real (n) and imaginary (κ) parts of the complex refractive index of silicon, it is found that with the application of a magnetic field the plots of these quantities in the low frequency region (sub-terahertz region) are smoother than those without magnetic field. These features indicate that a significant enhancement of the signal-to-noise (S/N) ratio in the low frequency can be obtained by applying a magnetic field on the InAs emitter.
Published
2012-07-03
Issue
Section
Articles
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to the automatic transfer of the copyright to the publisher; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources; and that any costs associated with obtaining this permission are the authors’ responsibility.