The Jordan Canonical Form of a Product of Elementary <em>S</em>-unitary Matrices

  • Erwin J. Gonda University of the Philippines
  • Agnes T. Paras University of the Philippines

Abstract

Let S be an n-by-n, nonsingular, and Hermitian matrix. A square complex matrix is said to be S-unitary if Q*SQ = S. An S-unitary matrix Q is said to be elementary if rank(Q - l) = 1. It is known what form every elementary S-unitary can take, and that every S-unitary can be written as a product of elementary S-unitaries. In this paper, we determine the Jordan canonical form of a product of two elementary S-unitaries.

Published
2020-09-17
How to Cite
GONDA, Erwin J.; PARAS, Agnes T.. The Jordan Canonical Form of a Product of Elementary S-unitary Matrices. Science Diliman: A Journal of Pure and Applied Sciences, [S.l.], v. 32, n. 1, sep. 2020. ISSN 2012-0818. Available at: <https://journals.upd.edu.ph/index.php/sciencediliman/article/view/7211>. Date accessed: 03 sep. 2025.
Section
Articles

Keywords

elementary S-unitary matrix, Hermitian matrix, Jordan canonical form