A Hybrid LBFGS-DE Algorithm for Global Optimization of the Lennard-Jones Cluster Problem
Abstract
ExcerptThe Lennard-Jones cluster conformation problem is to determine a configuration of n atoms in three-dimensional space where the sum of the nonlinear pairwise potential function is at a minimum. In this formula, ri,j is the distance between atoms i and j. This optimization problem is a severe test for global optimization algorithms due to its computational complexity: the number of local minima grows exponentially large as the number of atoms in the cluster is increased. As a specific test case, a better cluster configuration than the previously published putative minimum for the 38-atom case was found in the mid-1990s.
Published
2007-07-13
Issue
Section
Articles
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to the automatic transfer of the copyright to the publisher; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources; and that any costs associated with obtaining this permission are the authors’ responsibility.