Time-of-Flight Measurement of a 355-nm Nd:YAG Laser-Produced Aluminum Plasma
Abstract
An aluminum target in air was irradiated by a 355-nm Nd:YAG laser with a pulse width of 10 ns and a repetition rate of 10 Hz. The emission spectra of the laser-produced aluminum plasma were investigated with varying distances from the target surface. The results show the presence of a strong continuum very close to the target surface, but as the plasma evolve in space, the continuum gradually disappears and the emitted spectra are dominated by stronger line emissions. The observed plasma species are the neutral and singly ionized aluminum and their speeds were investigated using an optical time-of-flight measurement technique. Results show that the speeds of the plasma species decreases gradually with distance from the target surface. Comparison of the computed speeds of the plasma species shows that the singly ionized species have relatively greater kinetic energy than the neutral species.
Published
2007-07-16
Issue
Section
Articles
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to the automatic transfer of the copyright to the publisher; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources; and that any costs associated with obtaining this permission are the authors’ responsibility.